The spectral method and ergodic theorems for general Markov chains

We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya. Mathematics 2015-01, Vol.79 (2), p.311-345
1. Verfasser: Nagaev, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fixed set has finite expectation. Our conditions for the transition function are more general than those used by Athreya-Ney and Nummelin. Unlike them, we impose restrictions not on the original transition function but on the transition function of an embedded Markov chain constructed from the return times to the fixed set mentioned above. The proof uses the spectral theory of linear operators on a Banach space.
ISSN:1064-5632
1468-4810
DOI:10.1070/IM2015v079n02ABEH002744