Deep learning opens up protein science’s next frontiers
Computer models can now provide stunningly accurate predictions of proteins’ three-dimensional structures. But what about their biological functions?
Gespeichert in:
Veröffentlicht in: | Physics today 2021-10, Vol.74 (10), p.14-17 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 10 |
container_start_page | 14 |
container_title | Physics today |
container_volume | 74 |
creator | Miller, Johanna L. |
description | Computer models can now provide stunningly accurate predictions of proteins’ three-dimensional structures. But what about their biological functions? |
doi_str_mv | 10.1063/PT.3.4850 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_PT_3_4850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581541897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-e111ef26015a2205e207967ba67440e7fb68bb7639f992cfcd733d95bb76e0c53</originalsourceid><addsrcrecordid>eNp90M1KAzEQB_AgCtbqwTdY8KSwdZJsks1R6icU7KGew246kS01uyZZ0Zuv4ev5JG6p6EHwNDD8-M8HIccUJhQkP58vJnxSlAJ2yIjqQuQgtd4lIwBOc81YuU8OYlwBQAGMjoi-ROyyNVbBN_4xazv0Meu7rAttwsZn0TboLX6-f8TM42vKXGh9ajDEQ7LnqnXEo-86Jg_XV4vpbT67v7mbXsxyy5lKOVJK0TEJVFSMgUAGSktVV1IVBaBytSzrWkmundbMOrtUnC-12PQQrOBjcrLNHVZ67jEms2r74IeRhomSioKWWg3qdKtsaGMM6EwXmqcqvBkKZvMZM18YbjafGezZ1g7HpSo1rf_BL234haZbuv_w3-Qvi2pylA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581541897</pqid></control><display><type>article</type><title>Deep learning opens up protein science’s next frontiers</title><source>AIP Journals Complete</source><creator>Miller, Johanna L.</creator><creatorcontrib>Miller, Johanna L.</creatorcontrib><description>Computer models can now provide stunningly accurate predictions of proteins’ three-dimensional structures. But what about their biological functions?</description><identifier>ISSN: 0031-9228</identifier><identifier>EISSN: 1945-0699</identifier><identifier>DOI: 10.1063/PT.3.4850</identifier><identifier>CODEN: PHTOAD</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Amino acids ; Biophysics ; Chemistry ; Polymers ; Proteins</subject><ispartof>Physics today, 2021-10, Vol.74 (10), p.14-17</ispartof><rights>American Institute of Physics</rights><rights>Copyright American Institute of Physics Oct 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-e111ef26015a2205e207967ba67440e7fb68bb7639f992cfcd733d95bb76e0c53</citedby><cites>FETCH-LOGICAL-c327t-e111ef26015a2205e207967ba67440e7fb68bb7639f992cfcd733d95bb76e0c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/physicstoday/article-lookup/doi/10.1063/PT.3.4850$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Miller, Johanna L.</creatorcontrib><title>Deep learning opens up protein science’s next frontiers</title><title>Physics today</title><description>Computer models can now provide stunningly accurate predictions of proteins’ three-dimensional structures. But what about their biological functions?</description><subject>Amino acids</subject><subject>Biophysics</subject><subject>Chemistry</subject><subject>Polymers</subject><subject>Proteins</subject><issn>0031-9228</issn><issn>1945-0699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQB_AgCtbqwTdY8KSwdZJsks1R6icU7KGew246kS01uyZZ0Zuv4ev5JG6p6EHwNDD8-M8HIccUJhQkP58vJnxSlAJ2yIjqQuQgtd4lIwBOc81YuU8OYlwBQAGMjoi-ROyyNVbBN_4xazv0Meu7rAttwsZn0TboLX6-f8TM42vKXGh9ajDEQ7LnqnXEo-86Jg_XV4vpbT67v7mbXsxyy5lKOVJK0TEJVFSMgUAGSktVV1IVBaBytSzrWkmundbMOrtUnC-12PQQrOBjcrLNHVZ67jEms2r74IeRhomSioKWWg3qdKtsaGMM6EwXmqcqvBkKZvMZM18YbjafGezZ1g7HpSo1rf_BL234haZbuv_w3-Qvi2pylA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Miller, Johanna L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>Deep learning opens up protein science’s next frontiers</title><author>Miller, Johanna L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-e111ef26015a2205e207967ba67440e7fb68bb7639f992cfcd733d95bb76e0c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Biophysics</topic><topic>Chemistry</topic><topic>Polymers</topic><topic>Proteins</topic><toplevel>online_resources</toplevel><creatorcontrib>Miller, Johanna L.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics today</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Johanna L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning opens up protein science’s next frontiers</atitle><jtitle>Physics today</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>74</volume><issue>10</issue><spage>14</spage><epage>17</epage><pages>14-17</pages><issn>0031-9228</issn><eissn>1945-0699</eissn><coden>PHTOAD</coden><abstract>Computer models can now provide stunningly accurate predictions of proteins’ three-dimensional structures. But what about their biological functions?</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/PT.3.4850</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9228 |
ispartof | Physics today, 2021-10, Vol.74 (10), p.14-17 |
issn | 0031-9228 1945-0699 |
language | eng |
recordid | cdi_crossref_primary_10_1063_PT_3_4850 |
source | AIP Journals Complete |
subjects | Amino acids Biophysics Chemistry Polymers Proteins |
title | Deep learning opens up protein science’s next frontiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20opens%20up%20protein%20science%E2%80%99s%20next%20frontiers&rft.jtitle=Physics%20today&rft.au=Miller,%20Johanna%20L.&rft.date=2021-10-01&rft.volume=74&rft.issue=10&rft.spage=14&rft.epage=17&rft.pages=14-17&rft.issn=0031-9228&rft.eissn=1945-0699&rft.coden=PHTOAD&rft_id=info:doi/10.1063/PT.3.4850&rft_dat=%3Cproquest_cross%3E2581541897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581541897&rft_id=info:pmid/&rfr_iscdi=true |