Large-eddy simulations of Francis turbine flow control by radial jets

Francis turbine operation often experiences part load conditions, at which precessing vortex core (PVC) and double-helix structures can occur, limiting the stable operation range. The study investigates the mitigation of these flow instabilities in a Francis turbine air model by implementing radial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2025-02, Vol.37 (2)
Hauptverfasser: Lutchenko, I. I., Palkin, E. V., Hrebtov, M. Yu, Mullyadzhanov, R. I., Alekseenko, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physics of fluids (1994)
container_volume 37
creator Lutchenko, I. I.
Palkin, E. V.
Hrebtov, M. Yu
Mullyadzhanov, R. I.
Alekseenko, S. V.
description Francis turbine operation often experiences part load conditions, at which precessing vortex core (PVC) and double-helix structures can occur, limiting the stable operation range. The study investigates the mitigation of these flow instabilities in a Francis turbine air model by implementing radial jet injection. This approach is based on linear stability analysis and its adjoint formulation, revealing sensitive flow areas. Manipulating these zones can significantly impact instability dynamics. We perform large-eddy simulation of turbulent swirling flow in the Francis turbine model and employ radial injection through 12 circularly distributed holes on the runner crown tip with an injection flow rate of 2% of the inlet flow rate. A comparison with experimental data and a convergence study demonstrated good agreement in velocity fields and pulsation characteristics. Flow control was conducted for a wide range of hole positions and different angles between radial jets and the base flow. Spectral analysis of wall-pressure fluctuations revealed an optimal hole position, coinciding with the experimental results. However, flow control in simulations was less effective, reducing pressure pulsations of azimuthal flow modes m = 0, 1, 2 × 64, 33, and 17%, accordingly. Variation of the jet angle orientation demonstrated the highest pressure variance suppression for 90°. In pressure variance contours, PVC diminishing was observed near the runner crown, but that was amplified downstream.
doi_str_mv 10.1063/5.0249039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0249039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3163276245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c979-eaf65a8eed6f70f6d17bce44a042adf6d5d1b623f4f18878cdbf9a1c13b09e243</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNV872RylWBUKXnoP2XxIynZTk12k_96t7dnTzMDDDPMidE_JghLgz_WCMKEIVxdoRkmjKgkAl8dekgqA02t0U8qWkIkwmKHXtclfvvLOHXCJu7EzQ0x9wSngVTa9jQUPY25j73Ho0g-2qR9y6nB7wNm4aDq89UO5RVfBdMXfnescbVavm-V7tf58-1i-rCurpKq8CVCbxnsHQZIAjsrWeiEMEcy4aa4dbYHxIAJtGtlY1wZlqKW8Jcozwefo4bR2n9P36Mugt2nM_XRRcwqcSWCintTjSdmcSsk-6H2OO5MPmhJ9DEnX-hzSZJ9Ottg4_L3-D_4FSlBmrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3163276245</pqid></control><display><type>article</type><title>Large-eddy simulations of Francis turbine flow control by radial jets</title><source>AIP Journals Complete</source><creator>Lutchenko, I. I. ; Palkin, E. V. ; Hrebtov, M. Yu ; Mullyadzhanov, R. I. ; Alekseenko, S. V.</creator><creatorcontrib>Lutchenko, I. I. ; Palkin, E. V. ; Hrebtov, M. Yu ; Mullyadzhanov, R. I. ; Alekseenko, S. V.</creatorcontrib><description>Francis turbine operation often experiences part load conditions, at which precessing vortex core (PVC) and double-helix structures can occur, limiting the stable operation range. The study investigates the mitigation of these flow instabilities in a Francis turbine air model by implementing radial jet injection. This approach is based on linear stability analysis and its adjoint formulation, revealing sensitive flow areas. Manipulating these zones can significantly impact instability dynamics. We perform large-eddy simulation of turbulent swirling flow in the Francis turbine model and employ radial injection through 12 circularly distributed holes on the runner crown tip with an injection flow rate of 2% of the inlet flow rate. A comparison with experimental data and a convergence study demonstrated good agreement in velocity fields and pulsation characteristics. Flow control was conducted for a wide range of hole positions and different angles between radial jets and the base flow. Spectral analysis of wall-pressure fluctuations revealed an optimal hole position, coinciding with the experimental results. However, flow control in simulations was less effective, reducing pressure pulsations of azimuthal flow modes m = 0, 1, 2 × 64, 33, and 17%, accordingly. Variation of the jet angle orientation demonstrated the highest pressure variance suppression for 90°. In pressure variance contours, PVC diminishing was observed near the runner crown, but that was amplified downstream.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0249039</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Base flow ; Flow control ; Flow velocity ; Impact analysis ; Inlet flow ; Large eddy simulation ; Spectrum analysis ; Stability analysis ; Swirling ; Turbines ; Velocity distribution ; Vortices</subject><ispartof>Physics of fluids (1994), 2025-02, Vol.37 (2)</ispartof><rights>Author(s)</rights><rights>2025 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c979-eaf65a8eed6f70f6d17bce44a042adf6d5d1b623f4f18878cdbf9a1c13b09e243</cites><orcidid>0009-0002-9709-1668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Lutchenko, I. I.</creatorcontrib><creatorcontrib>Palkin, E. V.</creatorcontrib><creatorcontrib>Hrebtov, M. Yu</creatorcontrib><creatorcontrib>Mullyadzhanov, R. I.</creatorcontrib><creatorcontrib>Alekseenko, S. V.</creatorcontrib><title>Large-eddy simulations of Francis turbine flow control by radial jets</title><title>Physics of fluids (1994)</title><description>Francis turbine operation often experiences part load conditions, at which precessing vortex core (PVC) and double-helix structures can occur, limiting the stable operation range. The study investigates the mitigation of these flow instabilities in a Francis turbine air model by implementing radial jet injection. This approach is based on linear stability analysis and its adjoint formulation, revealing sensitive flow areas. Manipulating these zones can significantly impact instability dynamics. We perform large-eddy simulation of turbulent swirling flow in the Francis turbine model and employ radial injection through 12 circularly distributed holes on the runner crown tip with an injection flow rate of 2% of the inlet flow rate. A comparison with experimental data and a convergence study demonstrated good agreement in velocity fields and pulsation characteristics. Flow control was conducted for a wide range of hole positions and different angles between radial jets and the base flow. Spectral analysis of wall-pressure fluctuations revealed an optimal hole position, coinciding with the experimental results. However, flow control in simulations was less effective, reducing pressure pulsations of azimuthal flow modes m = 0, 1, 2 × 64, 33, and 17%, accordingly. Variation of the jet angle orientation demonstrated the highest pressure variance suppression for 90°. In pressure variance contours, PVC diminishing was observed near the runner crown, but that was amplified downstream.</description><subject>Base flow</subject><subject>Flow control</subject><subject>Flow velocity</subject><subject>Impact analysis</subject><subject>Inlet flow</subject><subject>Large eddy simulation</subject><subject>Spectrum analysis</subject><subject>Stability analysis</subject><subject>Swirling</subject><subject>Turbines</subject><subject>Velocity distribution</subject><subject>Vortices</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNV872RylWBUKXnoP2XxIynZTk12k_96t7dnTzMDDDPMidE_JghLgz_WCMKEIVxdoRkmjKgkAl8dekgqA02t0U8qWkIkwmKHXtclfvvLOHXCJu7EzQ0x9wSngVTa9jQUPY25j73Ho0g-2qR9y6nB7wNm4aDq89UO5RVfBdMXfnescbVavm-V7tf58-1i-rCurpKq8CVCbxnsHQZIAjsrWeiEMEcy4aa4dbYHxIAJtGtlY1wZlqKW8Jcozwefo4bR2n9P36Mugt2nM_XRRcwqcSWCintTjSdmcSsk-6H2OO5MPmhJ9DEnX-hzSZJ9Ottg4_L3-D_4FSlBmrg</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Lutchenko, I. I.</creator><creator>Palkin, E. V.</creator><creator>Hrebtov, M. Yu</creator><creator>Mullyadzhanov, R. I.</creator><creator>Alekseenko, S. V.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0002-9709-1668</orcidid></search><sort><creationdate>202502</creationdate><title>Large-eddy simulations of Francis turbine flow control by radial jets</title><author>Lutchenko, I. I. ; Palkin, E. V. ; Hrebtov, M. Yu ; Mullyadzhanov, R. I. ; Alekseenko, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c979-eaf65a8eed6f70f6d17bce44a042adf6d5d1b623f4f18878cdbf9a1c13b09e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Base flow</topic><topic>Flow control</topic><topic>Flow velocity</topic><topic>Impact analysis</topic><topic>Inlet flow</topic><topic>Large eddy simulation</topic><topic>Spectrum analysis</topic><topic>Stability analysis</topic><topic>Swirling</topic><topic>Turbines</topic><topic>Velocity distribution</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lutchenko, I. I.</creatorcontrib><creatorcontrib>Palkin, E. V.</creatorcontrib><creatorcontrib>Hrebtov, M. Yu</creatorcontrib><creatorcontrib>Mullyadzhanov, R. I.</creatorcontrib><creatorcontrib>Alekseenko, S. V.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lutchenko, I. I.</au><au>Palkin, E. V.</au><au>Hrebtov, M. Yu</au><au>Mullyadzhanov, R. I.</au><au>Alekseenko, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-eddy simulations of Francis turbine flow control by radial jets</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2025-02</date><risdate>2025</risdate><volume>37</volume><issue>2</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Francis turbine operation often experiences part load conditions, at which precessing vortex core (PVC) and double-helix structures can occur, limiting the stable operation range. The study investigates the mitigation of these flow instabilities in a Francis turbine air model by implementing radial jet injection. This approach is based on linear stability analysis and its adjoint formulation, revealing sensitive flow areas. Manipulating these zones can significantly impact instability dynamics. We perform large-eddy simulation of turbulent swirling flow in the Francis turbine model and employ radial injection through 12 circularly distributed holes on the runner crown tip with an injection flow rate of 2% of the inlet flow rate. A comparison with experimental data and a convergence study demonstrated good agreement in velocity fields and pulsation characteristics. Flow control was conducted for a wide range of hole positions and different angles between radial jets and the base flow. Spectral analysis of wall-pressure fluctuations revealed an optimal hole position, coinciding with the experimental results. However, flow control in simulations was less effective, reducing pressure pulsations of azimuthal flow modes m = 0, 1, 2 × 64, 33, and 17%, accordingly. Variation of the jet angle orientation demonstrated the highest pressure variance suppression for 90°. In pressure variance contours, PVC diminishing was observed near the runner crown, but that was amplified downstream.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0249039</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0002-9709-1668</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2025-02, Vol.37 (2)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0249039
source AIP Journals Complete
subjects Base flow
Flow control
Flow velocity
Impact analysis
Inlet flow
Large eddy simulation
Spectrum analysis
Stability analysis
Swirling
Turbines
Velocity distribution
Vortices
title Large-eddy simulations of Francis turbine flow control by radial jets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T09%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-eddy%20simulations%20of%20Francis%20turbine%20flow%20control%20by%20radial%20jets&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Lutchenko,%20I.%20I.&rft.date=2025-02&rft.volume=37&rft.issue=2&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0249039&rft_dat=%3Cproquest_cross%3E3163276245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3163276245&rft_id=info:pmid/&rfr_iscdi=true