Current-induced resonance in long conductive ferromagnetic nano-wires

Ferromagnetic nanowires are receiving attention as functional elements in technologically important applications in microwave devices, spintronics, and biomedicine. They can be readily fabricated over large areas using electrodeposition, and their magnetic response can be tuned through control of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2024-11, Vol.136 (19)
Hauptverfasser: Alneari, Mohammad H., Aziz, Mustafa M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page
container_title Journal of applied physics
container_volume 136
creator Alneari, Mohammad H.
Aziz, Mustafa M.
description Ferromagnetic nanowires are receiving attention as functional elements in technologically important applications in microwave devices, spintronics, and biomedicine. They can be readily fabricated over large areas using electrodeposition, and their magnetic response can be tuned through control of their size, geometry, and composition. Additionally, their geometrical properties provide a stable spin structure for manipulating magnetization dynamics using spin-polarized currents for spintronic applications. Structural analysis of individual cobalt nanowires indicated magnetocrystalline anisotropy predominantly perpendicular to the nanowire axis. This significantly alters the micromagnetic energy landscape in the nanowire and breaks the circular symmetry of the dynamic magnetization and resonance modes which is often assumed in theory. In this article, we investigate, using finite-element micromagnetic–electromagnetic simulations, the effect of the variation of magnetocrystalline anisotropy angle on the dynamic magnetization in the nanowire and leads to a shift in the resonance frequencies and modes. The resonance is induced by a pulsed electric current applied along the nanowire axis and simulations include the contributions of magnetocrystalline anisotropy, exchange, dipolar fields, and eddy currents. Understanding the magnetization dynamics induced by electric currents and spin-wave modes in metallic magnetic nanowires and their size and anisotropy angle dependence is important for the design and tuning of magnetic nanowire arrays and devices.
doi_str_mv 10.1063/5.0239978
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0239978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130457972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-6a760eea2283a377193a41fb7e84b1178121c80e2217111f8dcb77497d93c4ad3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w4EkhNZPsdpKjLPUDCl70HNJstqS0SU2yiv_eLe3Z0xzmeWfgJeQW2AzYXDw2M8aFUijPyASYVBSbhp2TCWMcqFSoLslVzhvGAKRQE7Joh5RcKNSHbrCuq5LLMZhgXeVDtY1hXdl4WBX_7arepRR3Zh1c8bYaWaQ_fkxck4vebLO7Oc0p-XxefLSvdPn-8tY-LakFyQudG5wz5wznUhiBCEqYGvoVOlmvAFACByuZ4xwQAHrZ2RVirbBTwtamE1Nyd7y7T_FrcLnoTRxSGF9qAYLVDSrko7o_Kptizsn1ep_8zqRfDUwfWtKNPrU02oejzdYXU3wM_-A_Q6dmBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130457972</pqid></control><display><type>article</type><title>Current-induced resonance in long conductive ferromagnetic nano-wires</title><source>Alma/SFX Local Collection</source><creator>Alneari, Mohammad H. ; Aziz, Mustafa M.</creator><creatorcontrib>Alneari, Mohammad H. ; Aziz, Mustafa M.</creatorcontrib><description>Ferromagnetic nanowires are receiving attention as functional elements in technologically important applications in microwave devices, spintronics, and biomedicine. They can be readily fabricated over large areas using electrodeposition, and their magnetic response can be tuned through control of their size, geometry, and composition. Additionally, their geometrical properties provide a stable spin structure for manipulating magnetization dynamics using spin-polarized currents for spintronic applications. Structural analysis of individual cobalt nanowires indicated magnetocrystalline anisotropy predominantly perpendicular to the nanowire axis. This significantly alters the micromagnetic energy landscape in the nanowire and breaks the circular symmetry of the dynamic magnetization and resonance modes which is often assumed in theory. In this article, we investigate, using finite-element micromagnetic–electromagnetic simulations, the effect of the variation of magnetocrystalline anisotropy angle on the dynamic magnetization in the nanowire and leads to a shift in the resonance frequencies and modes. The resonance is induced by a pulsed electric current applied along the nanowire axis and simulations include the contributions of magnetocrystalline anisotropy, exchange, dipolar fields, and eddy currents. Understanding the magnetization dynamics induced by electric currents and spin-wave modes in metallic magnetic nanowires and their size and anisotropy angle dependence is important for the design and tuning of magnetic nanowire arrays and devices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0239978</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Electric currents ; Ferromagnetic resonance ; Ferromagnetism ; Magnetic properties ; Magnetic wire ; Magnetization ; Nanowires ; Resonance ; Spin dynamics ; Spin structure ; Spintronics</subject><ispartof>Journal of applied physics, 2024-11, Vol.136 (19)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-6a760eea2283a377193a41fb7e84b1178121c80e2217111f8dcb77497d93c4ad3</cites><orcidid>0000-0001-5065-8909 ; 0009-0000-5839-2172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Alneari, Mohammad H.</creatorcontrib><creatorcontrib>Aziz, Mustafa M.</creatorcontrib><title>Current-induced resonance in long conductive ferromagnetic nano-wires</title><title>Journal of applied physics</title><description>Ferromagnetic nanowires are receiving attention as functional elements in technologically important applications in microwave devices, spintronics, and biomedicine. They can be readily fabricated over large areas using electrodeposition, and their magnetic response can be tuned through control of their size, geometry, and composition. Additionally, their geometrical properties provide a stable spin structure for manipulating magnetization dynamics using spin-polarized currents for spintronic applications. Structural analysis of individual cobalt nanowires indicated magnetocrystalline anisotropy predominantly perpendicular to the nanowire axis. This significantly alters the micromagnetic energy landscape in the nanowire and breaks the circular symmetry of the dynamic magnetization and resonance modes which is often assumed in theory. In this article, we investigate, using finite-element micromagnetic–electromagnetic simulations, the effect of the variation of magnetocrystalline anisotropy angle on the dynamic magnetization in the nanowire and leads to a shift in the resonance frequencies and modes. The resonance is induced by a pulsed electric current applied along the nanowire axis and simulations include the contributions of magnetocrystalline anisotropy, exchange, dipolar fields, and eddy currents. Understanding the magnetization dynamics induced by electric currents and spin-wave modes in metallic magnetic nanowires and their size and anisotropy angle dependence is important for the design and tuning of magnetic nanowire arrays and devices.</description><subject>Anisotropy</subject><subject>Electric currents</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetism</subject><subject>Magnetic properties</subject><subject>Magnetic wire</subject><subject>Magnetization</subject><subject>Nanowires</subject><subject>Resonance</subject><subject>Spin dynamics</subject><subject>Spin structure</subject><subject>Spintronics</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w4EkhNZPsdpKjLPUDCl70HNJstqS0SU2yiv_eLe3Z0xzmeWfgJeQW2AzYXDw2M8aFUijPyASYVBSbhp2TCWMcqFSoLslVzhvGAKRQE7Joh5RcKNSHbrCuq5LLMZhgXeVDtY1hXdl4WBX_7arepRR3Zh1c8bYaWaQ_fkxck4vebLO7Oc0p-XxefLSvdPn-8tY-LakFyQudG5wz5wznUhiBCEqYGvoVOlmvAFACByuZ4xwQAHrZ2RVirbBTwtamE1Nyd7y7T_FrcLnoTRxSGF9qAYLVDSrko7o_Kptizsn1ep_8zqRfDUwfWtKNPrU02oejzdYXU3wM_-A_Q6dmBA</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Alneari, Mohammad H.</creator><creator>Aziz, Mustafa M.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5065-8909</orcidid><orcidid>https://orcid.org/0009-0000-5839-2172</orcidid></search><sort><creationdate>20241121</creationdate><title>Current-induced resonance in long conductive ferromagnetic nano-wires</title><author>Alneari, Mohammad H. ; Aziz, Mustafa M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-6a760eea2283a377193a41fb7e84b1178121c80e2217111f8dcb77497d93c4ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Electric currents</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetism</topic><topic>Magnetic properties</topic><topic>Magnetic wire</topic><topic>Magnetization</topic><topic>Nanowires</topic><topic>Resonance</topic><topic>Spin dynamics</topic><topic>Spin structure</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alneari, Mohammad H.</creatorcontrib><creatorcontrib>Aziz, Mustafa M.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alneari, Mohammad H.</au><au>Aziz, Mustafa M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current-induced resonance in long conductive ferromagnetic nano-wires</atitle><jtitle>Journal of applied physics</jtitle><date>2024-11-21</date><risdate>2024</risdate><volume>136</volume><issue>19</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Ferromagnetic nanowires are receiving attention as functional elements in technologically important applications in microwave devices, spintronics, and biomedicine. They can be readily fabricated over large areas using electrodeposition, and their magnetic response can be tuned through control of their size, geometry, and composition. Additionally, their geometrical properties provide a stable spin structure for manipulating magnetization dynamics using spin-polarized currents for spintronic applications. Structural analysis of individual cobalt nanowires indicated magnetocrystalline anisotropy predominantly perpendicular to the nanowire axis. This significantly alters the micromagnetic energy landscape in the nanowire and breaks the circular symmetry of the dynamic magnetization and resonance modes which is often assumed in theory. In this article, we investigate, using finite-element micromagnetic–electromagnetic simulations, the effect of the variation of magnetocrystalline anisotropy angle on the dynamic magnetization in the nanowire and leads to a shift in the resonance frequencies and modes. The resonance is induced by a pulsed electric current applied along the nanowire axis and simulations include the contributions of magnetocrystalline anisotropy, exchange, dipolar fields, and eddy currents. Understanding the magnetization dynamics induced by electric currents and spin-wave modes in metallic magnetic nanowires and their size and anisotropy angle dependence is important for the design and tuning of magnetic nanowire arrays and devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0239978</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5065-8909</orcidid><orcidid>https://orcid.org/0009-0000-5839-2172</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-11, Vol.136 (19)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0239978
source Alma/SFX Local Collection
subjects Anisotropy
Electric currents
Ferromagnetic resonance
Ferromagnetism
Magnetic properties
Magnetic wire
Magnetization
Nanowires
Resonance
Spin dynamics
Spin structure
Spintronics
title Current-induced resonance in long conductive ferromagnetic nano-wires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current-induced%20resonance%20in%20long%20conductive%20ferromagnetic%20nano-wires&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Alneari,%20Mohammad%20H.&rft.date=2024-11-21&rft.volume=136&rft.issue=19&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0239978&rft_dat=%3Cproquest_cross%3E3130457972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130457972&rft_id=info:pmid/&rfr_iscdi=true