Tunable piezoresistivity for sensors with antiferromagnetic pure Cr and Cr-rich alloy thin films: Cr–V, Cr–W, Cr–Mn
Sputter-deposited thin films of pure chromium and chromium-rich alloys with V, W, and Mn are evaluated in terms of electrical resistivity and piezoresistivity, as measured by the gauge factor, from room temperature to 470 °C. The alloying elements vanadium, tungsten, and manganese, are known to eith...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2025-01, Vol.137 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 137 |
creator | Schwebke, S. Schultes, G. |
description | Sputter-deposited thin films of pure chromium and chromium-rich alloys with V, W, and Mn are evaluated in terms of electrical resistivity and piezoresistivity, as measured by the gauge factor, from room temperature to 470 °C. The alloying elements vanadium, tungsten, and manganese, are known to either stabilize or destabilize the spin-density wave antiferromagnetism found in Cr. In a concentration series and a substrate bias voltage series, the variation of resistivity, gauge factors (of up to 20), and their temperature coefficients is shown. High-temperature resistivity measurements indicate increased Néel transition temperatures that are related to a gauge factor maximum. Generally, the gauge factor increases toward the Néel temperature. The Cr
60Mn
40 film, however, has a small negative temperature coefficient of the gauge factor. This is a desired property in strain and pressure sensor films, as it allows for compensating the temperature coefficient of the elastic modulus of aluminum or steel transducers. An analysis of the resistance change through mechanical loading quantifies Néel temperature changes of up to 100 K per percent of strain that are likely the mechanism of the observed piezoresistivity. Overall, the Cr-rich alloy thin films represent a class of metallic piezoresistive films with properties that can be well adjusted to the sensor application by concentration and sputtering parameters. |
doi_str_mv | 10.1063/5.0239812 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0239812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153934494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1684-a0efb9d9be436b9553775d9c63a5c712b1063bd8b69bbd7bc3c7ba5f5ab8c5983</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqUw8AaWmECk2HGc2Gyo4k8qYikwRrbjUFepHWwHFCbegTfkSQhKZ6ZvOJ_O0b0AHGM0wygnF3SGUsIZTnfABCPGk4JStAsmCKU4Ybzg--AghDVCGDPCJ6BfdlbIRsPW6E_ndTAhmncTe1g7D4O2wfkAP0xcQWGjqbX3biNerY5GwbbzGs79kFQDEm_UYDWN62FcGQtr02zC5ZD8fH0_n4982fLBHoK9WjRBH205BU8318v5XbJ4vL2fXy0ShXOWJQLpWvKKS52RXHJKSVHQiqucCKoKnMq_s2XFZM6lrAqpiCqkoDUVkinKGZmCk7G39e6t0yGWa9d5O0yWBFPCSZbxbLBOR0t5F4LXddl6sxG-LzEq_yZKWm4_O7hnoxuUiSIaZ_-RfwExl3u1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153934494</pqid></control><display><type>article</type><title>Tunable piezoresistivity for sensors with antiferromagnetic pure Cr and Cr-rich alloy thin films: Cr–V, Cr–W, Cr–Mn</title><source>Alma/SFX Local Collection</source><creator>Schwebke, S. ; Schultes, G.</creator><creatorcontrib>Schwebke, S. ; Schultes, G.</creatorcontrib><description>Sputter-deposited thin films of pure chromium and chromium-rich alloys with V, W, and Mn are evaluated in terms of electrical resistivity and piezoresistivity, as measured by the gauge factor, from room temperature to 470 °C. The alloying elements vanadium, tungsten, and manganese, are known to either stabilize or destabilize the spin-density wave antiferromagnetism found in Cr. In a concentration series and a substrate bias voltage series, the variation of resistivity, gauge factors (of up to 20), and their temperature coefficients is shown. High-temperature resistivity measurements indicate increased Néel transition temperatures that are related to a gauge factor maximum. Generally, the gauge factor increases toward the Néel temperature. The Cr
60Mn
40 film, however, has a small negative temperature coefficient of the gauge factor. This is a desired property in strain and pressure sensor films, as it allows for compensating the temperature coefficient of the elastic modulus of aluminum or steel transducers. An analysis of the resistance change through mechanical loading quantifies Néel temperature changes of up to 100 K per percent of strain that are likely the mechanism of the observed piezoresistivity. Overall, the Cr-rich alloy thin films represent a class of metallic piezoresistive films with properties that can be well adjusted to the sensor application by concentration and sputtering parameters.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0239812</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alloying elements ; Alloys ; Antiferromagnetism ; Chromium ; Elastic analysis ; Elastic properties ; Electrical resistivity ; High temperature ; Load resistance ; Manganese ; Modulus of elasticity ; Neel temperature ; Piezoresistivity ; Pressure sensors ; Room temperature ; Spin density waves ; Strain analysis ; Strain gauges ; Substrates ; Temperature ; Thin films ; Tungsten ; Vanadium</subject><ispartof>Journal of applied physics, 2025-01, Vol.137 (2)</ispartof><rights>Author(s)</rights><rights>2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1684-a0efb9d9be436b9553775d9c63a5c712b1063bd8b69bbd7bc3c7ba5f5ab8c5983</cites><orcidid>0000-0002-4038-3195 ; 0009-0002-4135-8677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Schwebke, S.</creatorcontrib><creatorcontrib>Schultes, G.</creatorcontrib><title>Tunable piezoresistivity for sensors with antiferromagnetic pure Cr and Cr-rich alloy thin films: Cr–V, Cr–W, Cr–Mn</title><title>Journal of applied physics</title><description>Sputter-deposited thin films of pure chromium and chromium-rich alloys with V, W, and Mn are evaluated in terms of electrical resistivity and piezoresistivity, as measured by the gauge factor, from room temperature to 470 °C. The alloying elements vanadium, tungsten, and manganese, are known to either stabilize or destabilize the spin-density wave antiferromagnetism found in Cr. In a concentration series and a substrate bias voltage series, the variation of resistivity, gauge factors (of up to 20), and their temperature coefficients is shown. High-temperature resistivity measurements indicate increased Néel transition temperatures that are related to a gauge factor maximum. Generally, the gauge factor increases toward the Néel temperature. The Cr
60Mn
40 film, however, has a small negative temperature coefficient of the gauge factor. This is a desired property in strain and pressure sensor films, as it allows for compensating the temperature coefficient of the elastic modulus of aluminum or steel transducers. An analysis of the resistance change through mechanical loading quantifies Néel temperature changes of up to 100 K per percent of strain that are likely the mechanism of the observed piezoresistivity. Overall, the Cr-rich alloy thin films represent a class of metallic piezoresistive films with properties that can be well adjusted to the sensor application by concentration and sputtering parameters.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Antiferromagnetism</subject><subject>Chromium</subject><subject>Elastic analysis</subject><subject>Elastic properties</subject><subject>Electrical resistivity</subject><subject>High temperature</subject><subject>Load resistance</subject><subject>Manganese</subject><subject>Modulus of elasticity</subject><subject>Neel temperature</subject><subject>Piezoresistivity</subject><subject>Pressure sensors</subject><subject>Room temperature</subject><subject>Spin density waves</subject><subject>Strain analysis</subject><subject>Strain gauges</subject><subject>Substrates</subject><subject>Temperature</subject><subject>Thin films</subject><subject>Tungsten</subject><subject>Vanadium</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqUw8AaWmECk2HGc2Gyo4k8qYikwRrbjUFepHWwHFCbegTfkSQhKZ6ZvOJ_O0b0AHGM0wygnF3SGUsIZTnfABCPGk4JStAsmCKU4Ybzg--AghDVCGDPCJ6BfdlbIRsPW6E_ndTAhmncTe1g7D4O2wfkAP0xcQWGjqbX3biNerY5GwbbzGs79kFQDEm_UYDWN62FcGQtr02zC5ZD8fH0_n4982fLBHoK9WjRBH205BU8318v5XbJ4vL2fXy0ShXOWJQLpWvKKS52RXHJKSVHQiqucCKoKnMq_s2XFZM6lrAqpiCqkoDUVkinKGZmCk7G39e6t0yGWa9d5O0yWBFPCSZbxbLBOR0t5F4LXddl6sxG-LzEq_yZKWm4_O7hnoxuUiSIaZ_-RfwExl3u1</recordid><startdate>20250114</startdate><enddate>20250114</enddate><creator>Schwebke, S.</creator><creator>Schultes, G.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4038-3195</orcidid><orcidid>https://orcid.org/0009-0002-4135-8677</orcidid></search><sort><creationdate>20250114</creationdate><title>Tunable piezoresistivity for sensors with antiferromagnetic pure Cr and Cr-rich alloy thin films: Cr–V, Cr–W, Cr–Mn</title><author>Schwebke, S. ; Schultes, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1684-a0efb9d9be436b9553775d9c63a5c712b1063bd8b69bbd7bc3c7ba5f5ab8c5983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Antiferromagnetism</topic><topic>Chromium</topic><topic>Elastic analysis</topic><topic>Elastic properties</topic><topic>Electrical resistivity</topic><topic>High temperature</topic><topic>Load resistance</topic><topic>Manganese</topic><topic>Modulus of elasticity</topic><topic>Neel temperature</topic><topic>Piezoresistivity</topic><topic>Pressure sensors</topic><topic>Room temperature</topic><topic>Spin density waves</topic><topic>Strain analysis</topic><topic>Strain gauges</topic><topic>Substrates</topic><topic>Temperature</topic><topic>Thin films</topic><topic>Tungsten</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwebke, S.</creatorcontrib><creatorcontrib>Schultes, G.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwebke, S.</au><au>Schultes, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable piezoresistivity for sensors with antiferromagnetic pure Cr and Cr-rich alloy thin films: Cr–V, Cr–W, Cr–Mn</atitle><jtitle>Journal of applied physics</jtitle><date>2025-01-14</date><risdate>2025</risdate><volume>137</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Sputter-deposited thin films of pure chromium and chromium-rich alloys with V, W, and Mn are evaluated in terms of electrical resistivity and piezoresistivity, as measured by the gauge factor, from room temperature to 470 °C. The alloying elements vanadium, tungsten, and manganese, are known to either stabilize or destabilize the spin-density wave antiferromagnetism found in Cr. In a concentration series and a substrate bias voltage series, the variation of resistivity, gauge factors (of up to 20), and their temperature coefficients is shown. High-temperature resistivity measurements indicate increased Néel transition temperatures that are related to a gauge factor maximum. Generally, the gauge factor increases toward the Néel temperature. The Cr
60Mn
40 film, however, has a small negative temperature coefficient of the gauge factor. This is a desired property in strain and pressure sensor films, as it allows for compensating the temperature coefficient of the elastic modulus of aluminum or steel transducers. An analysis of the resistance change through mechanical loading quantifies Néel temperature changes of up to 100 K per percent of strain that are likely the mechanism of the observed piezoresistivity. Overall, the Cr-rich alloy thin films represent a class of metallic piezoresistive films with properties that can be well adjusted to the sensor application by concentration and sputtering parameters.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0239812</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4038-3195</orcidid><orcidid>https://orcid.org/0009-0002-4135-8677</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2025-01, Vol.137 (2) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0239812 |
source | Alma/SFX Local Collection |
subjects | Alloying elements Alloys Antiferromagnetism Chromium Elastic analysis Elastic properties Electrical resistivity High temperature Load resistance Manganese Modulus of elasticity Neel temperature Piezoresistivity Pressure sensors Room temperature Spin density waves Strain analysis Strain gauges Substrates Temperature Thin films Tungsten Vanadium |
title | Tunable piezoresistivity for sensors with antiferromagnetic pure Cr and Cr-rich alloy thin films: Cr–V, Cr–W, Cr–Mn |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20piezoresistivity%20for%20sensors%20with%20antiferromagnetic%20pure%20Cr%20and%20Cr-rich%20alloy%20thin%20films:%20Cr%E2%80%93V,%20Cr%E2%80%93W,%20Cr%E2%80%93Mn&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Schwebke,%20S.&rft.date=2025-01-14&rft.volume=137&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0239812&rft_dat=%3Cproquest_cross%3E3153934494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153934494&rft_id=info:pmid/&rfr_iscdi=true |