Tunable piezoresistivity for sensors with antiferromagnetic pure Cr and Cr-rich alloy thin films: Cr–V, Cr–W, Cr–Mn

Sputter-deposited thin films of pure chromium and chromium-rich alloys with V, W, and Mn are evaluated in terms of electrical resistivity and piezoresistivity, as measured by the gauge factor, from room temperature to 470 °C. The alloying elements vanadium, tungsten, and manganese, are known to eith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2025-01, Vol.137 (2)
Hauptverfasser: Schwebke, S., Schultes, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of applied physics
container_volume 137
creator Schwebke, S.
Schultes, G.
description Sputter-deposited thin films of pure chromium and chromium-rich alloys with V, W, and Mn are evaluated in terms of electrical resistivity and piezoresistivity, as measured by the gauge factor, from room temperature to 470 °C. The alloying elements vanadium, tungsten, and manganese, are known to either stabilize or destabilize the spin-density wave antiferromagnetism found in Cr. In a concentration series and a substrate bias voltage series, the variation of resistivity, gauge factors (of up to 20), and their temperature coefficients is shown. High-temperature resistivity measurements indicate increased Néel transition temperatures that are related to a gauge factor maximum. Generally, the gauge factor increases toward the Néel temperature. The Cr 60Mn 40 film, however, has a small negative temperature coefficient of the gauge factor. This is a desired property in strain and pressure sensor films, as it allows for compensating the temperature coefficient of the elastic modulus of aluminum or steel transducers. An analysis of the resistance change through mechanical loading quantifies Néel temperature changes of up to 100 K per percent of strain that are likely the mechanism of the observed piezoresistivity. Overall, the Cr-rich alloy thin films represent a class of metallic piezoresistive films with properties that can be well adjusted to the sensor application by concentration and sputtering parameters.
doi_str_mv 10.1063/5.0239812
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0239812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153934494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1684-a0efb9d9be436b9553775d9c63a5c712b1063bd8b69bbd7bc3c7ba5f5ab8c5983</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqUw8AaWmECk2HGc2Gyo4k8qYikwRrbjUFepHWwHFCbegTfkSQhKZ6ZvOJ_O0b0AHGM0wygnF3SGUsIZTnfABCPGk4JStAsmCKU4Ybzg--AghDVCGDPCJ6BfdlbIRsPW6E_ndTAhmncTe1g7D4O2wfkAP0xcQWGjqbX3biNerY5GwbbzGs79kFQDEm_UYDWN62FcGQtr02zC5ZD8fH0_n4982fLBHoK9WjRBH205BU8318v5XbJ4vL2fXy0ShXOWJQLpWvKKS52RXHJKSVHQiqucCKoKnMq_s2XFZM6lrAqpiCqkoDUVkinKGZmCk7G39e6t0yGWa9d5O0yWBFPCSZbxbLBOR0t5F4LXddl6sxG-LzEq_yZKWm4_O7hnoxuUiSIaZ_-RfwExl3u1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153934494</pqid></control><display><type>article</type><title>Tunable piezoresistivity for sensors with antiferromagnetic pure Cr and Cr-rich alloy thin films: Cr–V, Cr–W, Cr–Mn</title><source>Alma/SFX Local Collection</source><creator>Schwebke, S. ; Schultes, G.</creator><creatorcontrib>Schwebke, S. ; Schultes, G.</creatorcontrib><description>Sputter-deposited thin films of pure chromium and chromium-rich alloys with V, W, and Mn are evaluated in terms of electrical resistivity and piezoresistivity, as measured by the gauge factor, from room temperature to 470 °C. The alloying elements vanadium, tungsten, and manganese, are known to either stabilize or destabilize the spin-density wave antiferromagnetism found in Cr. In a concentration series and a substrate bias voltage series, the variation of resistivity, gauge factors (of up to 20), and their temperature coefficients is shown. High-temperature resistivity measurements indicate increased Néel transition temperatures that are related to a gauge factor maximum. Generally, the gauge factor increases toward the Néel temperature. The Cr 60Mn 40 film, however, has a small negative temperature coefficient of the gauge factor. This is a desired property in strain and pressure sensor films, as it allows for compensating the temperature coefficient of the elastic modulus of aluminum or steel transducers. An analysis of the resistance change through mechanical loading quantifies Néel temperature changes of up to 100 K per percent of strain that are likely the mechanism of the observed piezoresistivity. Overall, the Cr-rich alloy thin films represent a class of metallic piezoresistive films with properties that can be well adjusted to the sensor application by concentration and sputtering parameters.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0239812</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alloying elements ; Alloys ; Antiferromagnetism ; Chromium ; Elastic analysis ; Elastic properties ; Electrical resistivity ; High temperature ; Load resistance ; Manganese ; Modulus of elasticity ; Neel temperature ; Piezoresistivity ; Pressure sensors ; Room temperature ; Spin density waves ; Strain analysis ; Strain gauges ; Substrates ; Temperature ; Thin films ; Tungsten ; Vanadium</subject><ispartof>Journal of applied physics, 2025-01, Vol.137 (2)</ispartof><rights>Author(s)</rights><rights>2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1684-a0efb9d9be436b9553775d9c63a5c712b1063bd8b69bbd7bc3c7ba5f5ab8c5983</cites><orcidid>0000-0002-4038-3195 ; 0009-0002-4135-8677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Schwebke, S.</creatorcontrib><creatorcontrib>Schultes, G.</creatorcontrib><title>Tunable piezoresistivity for sensors with antiferromagnetic pure Cr and Cr-rich alloy thin films: Cr–V, Cr–W, Cr–Mn</title><title>Journal of applied physics</title><description>Sputter-deposited thin films of pure chromium and chromium-rich alloys with V, W, and Mn are evaluated in terms of electrical resistivity and piezoresistivity, as measured by the gauge factor, from room temperature to 470 °C. The alloying elements vanadium, tungsten, and manganese, are known to either stabilize or destabilize the spin-density wave antiferromagnetism found in Cr. In a concentration series and a substrate bias voltage series, the variation of resistivity, gauge factors (of up to 20), and their temperature coefficients is shown. High-temperature resistivity measurements indicate increased Néel transition temperatures that are related to a gauge factor maximum. Generally, the gauge factor increases toward the Néel temperature. The Cr 60Mn 40 film, however, has a small negative temperature coefficient of the gauge factor. This is a desired property in strain and pressure sensor films, as it allows for compensating the temperature coefficient of the elastic modulus of aluminum or steel transducers. An analysis of the resistance change through mechanical loading quantifies Néel temperature changes of up to 100 K per percent of strain that are likely the mechanism of the observed piezoresistivity. Overall, the Cr-rich alloy thin films represent a class of metallic piezoresistive films with properties that can be well adjusted to the sensor application by concentration and sputtering parameters.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Antiferromagnetism</subject><subject>Chromium</subject><subject>Elastic analysis</subject><subject>Elastic properties</subject><subject>Electrical resistivity</subject><subject>High temperature</subject><subject>Load resistance</subject><subject>Manganese</subject><subject>Modulus of elasticity</subject><subject>Neel temperature</subject><subject>Piezoresistivity</subject><subject>Pressure sensors</subject><subject>Room temperature</subject><subject>Spin density waves</subject><subject>Strain analysis</subject><subject>Strain gauges</subject><subject>Substrates</subject><subject>Temperature</subject><subject>Thin films</subject><subject>Tungsten</subject><subject>Vanadium</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqUw8AaWmECk2HGc2Gyo4k8qYikwRrbjUFepHWwHFCbegTfkSQhKZ6ZvOJ_O0b0AHGM0wygnF3SGUsIZTnfABCPGk4JStAsmCKU4Ybzg--AghDVCGDPCJ6BfdlbIRsPW6E_ndTAhmncTe1g7D4O2wfkAP0xcQWGjqbX3biNerY5GwbbzGs79kFQDEm_UYDWN62FcGQtr02zC5ZD8fH0_n4982fLBHoK9WjRBH205BU8318v5XbJ4vL2fXy0ShXOWJQLpWvKKS52RXHJKSVHQiqucCKoKnMq_s2XFZM6lrAqpiCqkoDUVkinKGZmCk7G39e6t0yGWa9d5O0yWBFPCSZbxbLBOR0t5F4LXddl6sxG-LzEq_yZKWm4_O7hnoxuUiSIaZ_-RfwExl3u1</recordid><startdate>20250114</startdate><enddate>20250114</enddate><creator>Schwebke, S.</creator><creator>Schultes, G.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4038-3195</orcidid><orcidid>https://orcid.org/0009-0002-4135-8677</orcidid></search><sort><creationdate>20250114</creationdate><title>Tunable piezoresistivity for sensors with antiferromagnetic pure Cr and Cr-rich alloy thin films: Cr–V, Cr–W, Cr–Mn</title><author>Schwebke, S. ; Schultes, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1684-a0efb9d9be436b9553775d9c63a5c712b1063bd8b69bbd7bc3c7ba5f5ab8c5983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Antiferromagnetism</topic><topic>Chromium</topic><topic>Elastic analysis</topic><topic>Elastic properties</topic><topic>Electrical resistivity</topic><topic>High temperature</topic><topic>Load resistance</topic><topic>Manganese</topic><topic>Modulus of elasticity</topic><topic>Neel temperature</topic><topic>Piezoresistivity</topic><topic>Pressure sensors</topic><topic>Room temperature</topic><topic>Spin density waves</topic><topic>Strain analysis</topic><topic>Strain gauges</topic><topic>Substrates</topic><topic>Temperature</topic><topic>Thin films</topic><topic>Tungsten</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwebke, S.</creatorcontrib><creatorcontrib>Schultes, G.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwebke, S.</au><au>Schultes, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable piezoresistivity for sensors with antiferromagnetic pure Cr and Cr-rich alloy thin films: Cr–V, Cr–W, Cr–Mn</atitle><jtitle>Journal of applied physics</jtitle><date>2025-01-14</date><risdate>2025</risdate><volume>137</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Sputter-deposited thin films of pure chromium and chromium-rich alloys with V, W, and Mn are evaluated in terms of electrical resistivity and piezoresistivity, as measured by the gauge factor, from room temperature to 470 °C. The alloying elements vanadium, tungsten, and manganese, are known to either stabilize or destabilize the spin-density wave antiferromagnetism found in Cr. In a concentration series and a substrate bias voltage series, the variation of resistivity, gauge factors (of up to 20), and their temperature coefficients is shown. High-temperature resistivity measurements indicate increased Néel transition temperatures that are related to a gauge factor maximum. Generally, the gauge factor increases toward the Néel temperature. The Cr 60Mn 40 film, however, has a small negative temperature coefficient of the gauge factor. This is a desired property in strain and pressure sensor films, as it allows for compensating the temperature coefficient of the elastic modulus of aluminum or steel transducers. An analysis of the resistance change through mechanical loading quantifies Néel temperature changes of up to 100 K per percent of strain that are likely the mechanism of the observed piezoresistivity. Overall, the Cr-rich alloy thin films represent a class of metallic piezoresistive films with properties that can be well adjusted to the sensor application by concentration and sputtering parameters.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0239812</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4038-3195</orcidid><orcidid>https://orcid.org/0009-0002-4135-8677</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2025-01, Vol.137 (2)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0239812
source Alma/SFX Local Collection
subjects Alloying elements
Alloys
Antiferromagnetism
Chromium
Elastic analysis
Elastic properties
Electrical resistivity
High temperature
Load resistance
Manganese
Modulus of elasticity
Neel temperature
Piezoresistivity
Pressure sensors
Room temperature
Spin density waves
Strain analysis
Strain gauges
Substrates
Temperature
Thin films
Tungsten
Vanadium
title Tunable piezoresistivity for sensors with antiferromagnetic pure Cr and Cr-rich alloy thin films: Cr–V, Cr–W, Cr–Mn
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20piezoresistivity%20for%20sensors%20with%20antiferromagnetic%20pure%20Cr%20and%20Cr-rich%20alloy%20thin%20films:%20Cr%E2%80%93V,%20Cr%E2%80%93W,%20Cr%E2%80%93Mn&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Schwebke,%20S.&rft.date=2025-01-14&rft.volume=137&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0239812&rft_dat=%3Cproquest_cross%3E3153934494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153934494&rft_id=info:pmid/&rfr_iscdi=true