Distinguishing local photoinduced forces from global photoacoustic interactions in homodyne infrared photoinduced force microscopy
The rise of tip-based optical force microscopy has transformed nanoscale optical and chemical imaging, enabling sub-10 nm spatial resolution by integrating optical excitation with atomic force microscopy. Photoinduced force microscopy (PiFM) stands out as a key technique, with applications in single...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2024-12, Vol.136 (24) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 136 |
creator | Almajhadi, Mohammad A. |
description | The rise of tip-based optical force microscopy has transformed nanoscale optical and chemical imaging, enabling sub-10 nm spatial resolution by integrating optical excitation with atomic force microscopy. Photoinduced force microscopy (PiFM) stands out as a key technique, with applications in single-molecule imaging, Raman spectroscopy, and near-field electromagnetic characterization. However, the contrast mechanisms underlying homodyne PiFM, particularly in the infrared regime, remain underexplored. This study provides novel insights into the interpretation of PiF signals, focusing on homodyne IR-PiFM. Contrary to previous assumptions, we demonstrate that the linear dependence of the PiF signal on sample thickness in homodyne mode originates from global photoacoustic forces rather than localized photothermal effects. By minimizing global interactions through power reduction and tip–sample proximity, we achieve a spatial resolution of 11 nm, comparable to heterodyne PiFM. Our findings reveal that both homodyne and heterodyne modes are fundamentally sensitive to tip-enhanced near-field optical intensity, with similar dependencies on sample thickness. This work advances the understanding of the contrast mechanism of PiFM and demonstrates that both homodyne and heterodyne modes can achieve high-resolution imaging, paving the way for broader applications in nanoscale optical and chemical analysis. |
doi_str_mv | 10.1063/5.0239117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0239117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149596131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-a20f9137ba1f935e67cc1e36aee077b4816c36e256484a413b060d07c9bae783</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqUw8A8sMYGUchcndjyi8ilVYukeOY7TukriYCdDV345rlomJKb3Tvfcex-E3CIsEDh7zBeQMokozsgMoZCJyHM4JzOAFJNCCnlJrkLYASAWTM7I97MNo-03kw3bKLR1WrV02LrR2b6etKlp47w2gTbedXTTuuq3rrSbYq-mth-NV3q0rg8xoVvXuXrfmxg3Xvlo8dePdlZ7F7Qb9tfkolFtMDcnnZP168t6-Z6sPt8-lk-rRGORjolKoZHIRKWwkSw3XGiNhnFlDAhRZQVyzbhJc54VmcqQVcChBqFlpYwo2JzcHW0H774mE8Zy5ybfx4klw0zmkiPDSN0fqcN2wZumHLztlN-XCOXhw2Venj4c2YcjG7Qd1eH8f-AfzJ1-TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149596131</pqid></control><display><type>article</type><title>Distinguishing local photoinduced forces from global photoacoustic interactions in homodyne infrared photoinduced force microscopy</title><source>Alma/SFX Local Collection</source><creator>Almajhadi, Mohammad A.</creator><creatorcontrib>Almajhadi, Mohammad A.</creatorcontrib><description>The rise of tip-based optical force microscopy has transformed nanoscale optical and chemical imaging, enabling sub-10 nm spatial resolution by integrating optical excitation with atomic force microscopy. Photoinduced force microscopy (PiFM) stands out as a key technique, with applications in single-molecule imaging, Raman spectroscopy, and near-field electromagnetic characterization. However, the contrast mechanisms underlying homodyne PiFM, particularly in the infrared regime, remain underexplored. This study provides novel insights into the interpretation of PiF signals, focusing on homodyne IR-PiFM. Contrary to previous assumptions, we demonstrate that the linear dependence of the PiF signal on sample thickness in homodyne mode originates from global photoacoustic forces rather than localized photothermal effects. By minimizing global interactions through power reduction and tip–sample proximity, we achieve a spatial resolution of 11 nm, comparable to heterodyne PiFM. Our findings reveal that both homodyne and heterodyne modes are fundamentally sensitive to tip-enhanced near-field optical intensity, with similar dependencies on sample thickness. This work advances the understanding of the contrast mechanism of PiFM and demonstrates that both homodyne and heterodyne modes can achieve high-resolution imaging, paving the way for broader applications in nanoscale optical and chemical analysis.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0239117</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chemical analysis ; Electromagnetic properties ; Image resolution ; Infrared imaging ; Microscopy ; Near fields ; Raman spectroscopy ; Spatial resolution ; Thickness</subject><ispartof>Journal of applied physics, 2024-12, Vol.136 (24)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-a20f9137ba1f935e67cc1e36aee077b4816c36e256484a413b060d07c9bae783</cites><orcidid>0000-0002-7582-7112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Almajhadi, Mohammad A.</creatorcontrib><title>Distinguishing local photoinduced forces from global photoacoustic interactions in homodyne infrared photoinduced force microscopy</title><title>Journal of applied physics</title><description>The rise of tip-based optical force microscopy has transformed nanoscale optical and chemical imaging, enabling sub-10 nm spatial resolution by integrating optical excitation with atomic force microscopy. Photoinduced force microscopy (PiFM) stands out as a key technique, with applications in single-molecule imaging, Raman spectroscopy, and near-field electromagnetic characterization. However, the contrast mechanisms underlying homodyne PiFM, particularly in the infrared regime, remain underexplored. This study provides novel insights into the interpretation of PiF signals, focusing on homodyne IR-PiFM. Contrary to previous assumptions, we demonstrate that the linear dependence of the PiF signal on sample thickness in homodyne mode originates from global photoacoustic forces rather than localized photothermal effects. By minimizing global interactions through power reduction and tip–sample proximity, we achieve a spatial resolution of 11 nm, comparable to heterodyne PiFM. Our findings reveal that both homodyne and heterodyne modes are fundamentally sensitive to tip-enhanced near-field optical intensity, with similar dependencies on sample thickness. This work advances the understanding of the contrast mechanism of PiFM and demonstrates that both homodyne and heterodyne modes can achieve high-resolution imaging, paving the way for broader applications in nanoscale optical and chemical analysis.</description><subject>Chemical analysis</subject><subject>Electromagnetic properties</subject><subject>Image resolution</subject><subject>Infrared imaging</subject><subject>Microscopy</subject><subject>Near fields</subject><subject>Raman spectroscopy</subject><subject>Spatial resolution</subject><subject>Thickness</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqUw8A8sMYGUchcndjyi8ilVYukeOY7TukriYCdDV345rlomJKb3Tvfcex-E3CIsEDh7zBeQMokozsgMoZCJyHM4JzOAFJNCCnlJrkLYASAWTM7I97MNo-03kw3bKLR1WrV02LrR2b6etKlp47w2gTbedXTTuuq3rrSbYq-mth-NV3q0rg8xoVvXuXrfmxg3Xvlo8dePdlZ7F7Qb9tfkolFtMDcnnZP168t6-Z6sPt8-lk-rRGORjolKoZHIRKWwkSw3XGiNhnFlDAhRZQVyzbhJc54VmcqQVcChBqFlpYwo2JzcHW0H774mE8Zy5ybfx4klw0zmkiPDSN0fqcN2wZumHLztlN-XCOXhw2Venj4c2YcjG7Qd1eH8f-AfzJ1-TQ</recordid><startdate>20241228</startdate><enddate>20241228</enddate><creator>Almajhadi, Mohammad A.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7582-7112</orcidid></search><sort><creationdate>20241228</creationdate><title>Distinguishing local photoinduced forces from global photoacoustic interactions in homodyne infrared photoinduced force microscopy</title><author>Almajhadi, Mohammad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-a20f9137ba1f935e67cc1e36aee077b4816c36e256484a413b060d07c9bae783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical analysis</topic><topic>Electromagnetic properties</topic><topic>Image resolution</topic><topic>Infrared imaging</topic><topic>Microscopy</topic><topic>Near fields</topic><topic>Raman spectroscopy</topic><topic>Spatial resolution</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almajhadi, Mohammad A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almajhadi, Mohammad A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing local photoinduced forces from global photoacoustic interactions in homodyne infrared photoinduced force microscopy</atitle><jtitle>Journal of applied physics</jtitle><date>2024-12-28</date><risdate>2024</risdate><volume>136</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The rise of tip-based optical force microscopy has transformed nanoscale optical and chemical imaging, enabling sub-10 nm spatial resolution by integrating optical excitation with atomic force microscopy. Photoinduced force microscopy (PiFM) stands out as a key technique, with applications in single-molecule imaging, Raman spectroscopy, and near-field electromagnetic characterization. However, the contrast mechanisms underlying homodyne PiFM, particularly in the infrared regime, remain underexplored. This study provides novel insights into the interpretation of PiF signals, focusing on homodyne IR-PiFM. Contrary to previous assumptions, we demonstrate that the linear dependence of the PiF signal on sample thickness in homodyne mode originates from global photoacoustic forces rather than localized photothermal effects. By minimizing global interactions through power reduction and tip–sample proximity, we achieve a spatial resolution of 11 nm, comparable to heterodyne PiFM. Our findings reveal that both homodyne and heterodyne modes are fundamentally sensitive to tip-enhanced near-field optical intensity, with similar dependencies on sample thickness. This work advances the understanding of the contrast mechanism of PiFM and demonstrates that both homodyne and heterodyne modes can achieve high-resolution imaging, paving the way for broader applications in nanoscale optical and chemical analysis.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0239117</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7582-7112</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-12, Vol.136 (24) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0239117 |
source | Alma/SFX Local Collection |
subjects | Chemical analysis Electromagnetic properties Image resolution Infrared imaging Microscopy Near fields Raman spectroscopy Spatial resolution Thickness |
title | Distinguishing local photoinduced forces from global photoacoustic interactions in homodyne infrared photoinduced force microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20local%20photoinduced%20forces%20from%20global%20photoacoustic%20interactions%20in%20homodyne%20infrared%20photoinduced%20force%20microscopy&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Almajhadi,%20Mohammad%20A.&rft.date=2024-12-28&rft.volume=136&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0239117&rft_dat=%3Cproquest_cross%3E3149596131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149596131&rft_id=info:pmid/&rfr_iscdi=true |