Distinguishing local photoinduced forces from global photoacoustic interactions in homodyne infrared photoinduced force microscopy

The rise of tip-based optical force microscopy has transformed nanoscale optical and chemical imaging, enabling sub-10 nm spatial resolution by integrating optical excitation with atomic force microscopy. Photoinduced force microscopy (PiFM) stands out as a key technique, with applications in single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2024-12, Vol.136 (24)
1. Verfasser: Almajhadi, Mohammad A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Journal of applied physics
container_volume 136
creator Almajhadi, Mohammad A.
description The rise of tip-based optical force microscopy has transformed nanoscale optical and chemical imaging, enabling sub-10 nm spatial resolution by integrating optical excitation with atomic force microscopy. Photoinduced force microscopy (PiFM) stands out as a key technique, with applications in single-molecule imaging, Raman spectroscopy, and near-field electromagnetic characterization. However, the contrast mechanisms underlying homodyne PiFM, particularly in the infrared regime, remain underexplored. This study provides novel insights into the interpretation of PiF signals, focusing on homodyne IR-PiFM. Contrary to previous assumptions, we demonstrate that the linear dependence of the PiF signal on sample thickness in homodyne mode originates from global photoacoustic forces rather than localized photothermal effects. By minimizing global interactions through power reduction and tip–sample proximity, we achieve a spatial resolution of 11 nm, comparable to heterodyne PiFM. Our findings reveal that both homodyne and heterodyne modes are fundamentally sensitive to tip-enhanced near-field optical intensity, with similar dependencies on sample thickness. This work advances the understanding of the contrast mechanism of PiFM and demonstrates that both homodyne and heterodyne modes can achieve high-resolution imaging, paving the way for broader applications in nanoscale optical and chemical analysis.
doi_str_mv 10.1063/5.0239117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0239117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149596131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-a20f9137ba1f935e67cc1e36aee077b4816c36e256484a413b060d07c9bae783</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqUw8A8sMYGUchcndjyi8ilVYukeOY7TukriYCdDV345rlomJKb3Tvfcex-E3CIsEDh7zBeQMokozsgMoZCJyHM4JzOAFJNCCnlJrkLYASAWTM7I97MNo-03kw3bKLR1WrV02LrR2b6etKlp47w2gTbedXTTuuq3rrSbYq-mth-NV3q0rg8xoVvXuXrfmxg3Xvlo8dePdlZ7F7Qb9tfkolFtMDcnnZP168t6-Z6sPt8-lk-rRGORjolKoZHIRKWwkSw3XGiNhnFlDAhRZQVyzbhJc54VmcqQVcChBqFlpYwo2JzcHW0H774mE8Zy5ybfx4klw0zmkiPDSN0fqcN2wZumHLztlN-XCOXhw2Venj4c2YcjG7Qd1eH8f-AfzJ1-TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149596131</pqid></control><display><type>article</type><title>Distinguishing local photoinduced forces from global photoacoustic interactions in homodyne infrared photoinduced force microscopy</title><source>Alma/SFX Local Collection</source><creator>Almajhadi, Mohammad A.</creator><creatorcontrib>Almajhadi, Mohammad A.</creatorcontrib><description>The rise of tip-based optical force microscopy has transformed nanoscale optical and chemical imaging, enabling sub-10 nm spatial resolution by integrating optical excitation with atomic force microscopy. Photoinduced force microscopy (PiFM) stands out as a key technique, with applications in single-molecule imaging, Raman spectroscopy, and near-field electromagnetic characterization. However, the contrast mechanisms underlying homodyne PiFM, particularly in the infrared regime, remain underexplored. This study provides novel insights into the interpretation of PiF signals, focusing on homodyne IR-PiFM. Contrary to previous assumptions, we demonstrate that the linear dependence of the PiF signal on sample thickness in homodyne mode originates from global photoacoustic forces rather than localized photothermal effects. By minimizing global interactions through power reduction and tip–sample proximity, we achieve a spatial resolution of 11 nm, comparable to heterodyne PiFM. Our findings reveal that both homodyne and heterodyne modes are fundamentally sensitive to tip-enhanced near-field optical intensity, with similar dependencies on sample thickness. This work advances the understanding of the contrast mechanism of PiFM and demonstrates that both homodyne and heterodyne modes can achieve high-resolution imaging, paving the way for broader applications in nanoscale optical and chemical analysis.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0239117</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chemical analysis ; Electromagnetic properties ; Image resolution ; Infrared imaging ; Microscopy ; Near fields ; Raman spectroscopy ; Spatial resolution ; Thickness</subject><ispartof>Journal of applied physics, 2024-12, Vol.136 (24)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-a20f9137ba1f935e67cc1e36aee077b4816c36e256484a413b060d07c9bae783</cites><orcidid>0000-0002-7582-7112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Almajhadi, Mohammad A.</creatorcontrib><title>Distinguishing local photoinduced forces from global photoacoustic interactions in homodyne infrared photoinduced force microscopy</title><title>Journal of applied physics</title><description>The rise of tip-based optical force microscopy has transformed nanoscale optical and chemical imaging, enabling sub-10 nm spatial resolution by integrating optical excitation with atomic force microscopy. Photoinduced force microscopy (PiFM) stands out as a key technique, with applications in single-molecule imaging, Raman spectroscopy, and near-field electromagnetic characterization. However, the contrast mechanisms underlying homodyne PiFM, particularly in the infrared regime, remain underexplored. This study provides novel insights into the interpretation of PiF signals, focusing on homodyne IR-PiFM. Contrary to previous assumptions, we demonstrate that the linear dependence of the PiF signal on sample thickness in homodyne mode originates from global photoacoustic forces rather than localized photothermal effects. By minimizing global interactions through power reduction and tip–sample proximity, we achieve a spatial resolution of 11 nm, comparable to heterodyne PiFM. Our findings reveal that both homodyne and heterodyne modes are fundamentally sensitive to tip-enhanced near-field optical intensity, with similar dependencies on sample thickness. This work advances the understanding of the contrast mechanism of PiFM and demonstrates that both homodyne and heterodyne modes can achieve high-resolution imaging, paving the way for broader applications in nanoscale optical and chemical analysis.</description><subject>Chemical analysis</subject><subject>Electromagnetic properties</subject><subject>Image resolution</subject><subject>Infrared imaging</subject><subject>Microscopy</subject><subject>Near fields</subject><subject>Raman spectroscopy</subject><subject>Spatial resolution</subject><subject>Thickness</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqUw8A8sMYGUchcndjyi8ilVYukeOY7TukriYCdDV345rlomJKb3Tvfcex-E3CIsEDh7zBeQMokozsgMoZCJyHM4JzOAFJNCCnlJrkLYASAWTM7I97MNo-03kw3bKLR1WrV02LrR2b6etKlp47w2gTbedXTTuuq3rrSbYq-mth-NV3q0rg8xoVvXuXrfmxg3Xvlo8dePdlZ7F7Qb9tfkolFtMDcnnZP168t6-Z6sPt8-lk-rRGORjolKoZHIRKWwkSw3XGiNhnFlDAhRZQVyzbhJc54VmcqQVcChBqFlpYwo2JzcHW0H774mE8Zy5ybfx4klw0zmkiPDSN0fqcN2wZumHLztlN-XCOXhw2Venj4c2YcjG7Qd1eH8f-AfzJ1-TQ</recordid><startdate>20241228</startdate><enddate>20241228</enddate><creator>Almajhadi, Mohammad A.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7582-7112</orcidid></search><sort><creationdate>20241228</creationdate><title>Distinguishing local photoinduced forces from global photoacoustic interactions in homodyne infrared photoinduced force microscopy</title><author>Almajhadi, Mohammad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-a20f9137ba1f935e67cc1e36aee077b4816c36e256484a413b060d07c9bae783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical analysis</topic><topic>Electromagnetic properties</topic><topic>Image resolution</topic><topic>Infrared imaging</topic><topic>Microscopy</topic><topic>Near fields</topic><topic>Raman spectroscopy</topic><topic>Spatial resolution</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almajhadi, Mohammad A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almajhadi, Mohammad A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing local photoinduced forces from global photoacoustic interactions in homodyne infrared photoinduced force microscopy</atitle><jtitle>Journal of applied physics</jtitle><date>2024-12-28</date><risdate>2024</risdate><volume>136</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The rise of tip-based optical force microscopy has transformed nanoscale optical and chemical imaging, enabling sub-10 nm spatial resolution by integrating optical excitation with atomic force microscopy. Photoinduced force microscopy (PiFM) stands out as a key technique, with applications in single-molecule imaging, Raman spectroscopy, and near-field electromagnetic characterization. However, the contrast mechanisms underlying homodyne PiFM, particularly in the infrared regime, remain underexplored. This study provides novel insights into the interpretation of PiF signals, focusing on homodyne IR-PiFM. Contrary to previous assumptions, we demonstrate that the linear dependence of the PiF signal on sample thickness in homodyne mode originates from global photoacoustic forces rather than localized photothermal effects. By minimizing global interactions through power reduction and tip–sample proximity, we achieve a spatial resolution of 11 nm, comparable to heterodyne PiFM. Our findings reveal that both homodyne and heterodyne modes are fundamentally sensitive to tip-enhanced near-field optical intensity, with similar dependencies on sample thickness. This work advances the understanding of the contrast mechanism of PiFM and demonstrates that both homodyne and heterodyne modes can achieve high-resolution imaging, paving the way for broader applications in nanoscale optical and chemical analysis.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0239117</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7582-7112</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-12, Vol.136 (24)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0239117
source Alma/SFX Local Collection
subjects Chemical analysis
Electromagnetic properties
Image resolution
Infrared imaging
Microscopy
Near fields
Raman spectroscopy
Spatial resolution
Thickness
title Distinguishing local photoinduced forces from global photoacoustic interactions in homodyne infrared photoinduced force microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20local%20photoinduced%20forces%20from%20global%20photoacoustic%20interactions%20in%20homodyne%20infrared%20photoinduced%20force%20microscopy&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Almajhadi,%20Mohammad%20A.&rft.date=2024-12-28&rft.volume=136&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0239117&rft_dat=%3Cproquest_cross%3E3149596131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149596131&rft_id=info:pmid/&rfr_iscdi=true