Analyzing the water stability mechanism in O-type NaLi0.33Mn0.67O2 as a cathode material for sodium-ion batteries
The moisture-induced instability of the sodium-layered transition metal oxides (NaxTMO2) presents a significant challenge in developing electrode materials for sodium-ion batteries (SIBs). Herein, via first-principles calculations, we investigate the impact of Li substitution on the water stability...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-12, Vol.125 (24) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 125 |
creator | Xu, Bo Qin, Wenjing Sun, Baozhen Wu, Musheng Liu, Sanqiu |
description | The moisture-induced instability of the sodium-layered transition metal oxides (NaxTMO2) presents a significant challenge in developing electrode materials for sodium-ion batteries (SIBs). Herein, via first-principles calculations, we investigate the impact of Li substitution on the water stability of O-type NaLi0.33Mn0.67O2 (NLMO). In particular, the processes of H2O decomposition, Na+/H+ exchange reaction, and hydrogen (H) diffusion on NLMO (101), are specifically compared with those on NMO (101). The results demonstrate that H2O can decompose into O and H species at the Mn–Mn bridge site, but into OH and O species at the Na–Na bridge site, suggesting H2O is unstable on both surfaces. Thereafter, Na+/H+ exchange reaction becomes more difficult on NLMO (101), with the values of −2.73/−2.25 eV and −3.45/−2.82 eV in P1/P2 sites for NLMO (101) and NMO (101). Meanwhile, H diffusion on NLMO (101) is also more difficult due to hydrogen resistance from the subsurface to the bulk. The corresponding barriers are 2.17 and 1.63 eV. However for NMO (101), H can penetrate from the surface to the subsurface and continue to the bulk, with the lowest barrier of 0.61 eV (“Path III-12”) and 0.83 eV (“Path I-23”), respectively. The Columbic interaction between H and metal (Li, Mn, and Na) atoms plays a key role in hydrogen resistance. Notably, Li doping can increase the difficulties in the Na+/H+ exchange reaction and H diffusion on NLMO (101). For this reason, NLMO shows stronger water stability compared to NMO. The in-depth understanding of the water stability mechanism of NLMO can facilitate the future development of high-stable cathodes for SIBs. |
doi_str_mv | 10.1063/5.0235686 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0235686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142345253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-d15ca31ebaf5df78ed1ddd879e7e315d3c8c4609bc54812b76d9ab2b2c32fbab3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFYX_oMBVwqJM3MzeSxL8QXRbnQd7jxip-TRZqZI_PWmtGtXl8P9-OAcQm45izlL4VHGTIBM8_SMzDjLsgg4z8_JjDEGUVpIfkmuvN9MUQqAGdktOmzGX9d907C29AeDHagPqFzjwkhbq9fYOd9S19FVFMatpR9YOhYDvHcsTrOVoOgpUo1h3RtL24PBYUPrfhL1xu3byPUdVRgOD-uvyUWNjbc3pzsnX89Pn8vXqFy9vC0XZaR5LkJkuNQI3Cqspamz3BpujMmzwmYWuDSgc52krFBaJjkXKktNgUoooUHUChXMyd3Rux363d76UG36_TC19RXwREAihYSJuj9Seui9H2xdbQfX4jBWnFWHRStZnRad2Icj67ULGKZW_8B_3y11fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142345253</pqid></control><display><type>article</type><title>Analyzing the water stability mechanism in O-type NaLi0.33Mn0.67O2 as a cathode material for sodium-ion batteries</title><source>AIP Journals Complete</source><creator>Xu, Bo ; Qin, Wenjing ; Sun, Baozhen ; Wu, Musheng ; Liu, Sanqiu</creator><creatorcontrib>Xu, Bo ; Qin, Wenjing ; Sun, Baozhen ; Wu, Musheng ; Liu, Sanqiu</creatorcontrib><description>The moisture-induced instability of the sodium-layered transition metal oxides (NaxTMO2) presents a significant challenge in developing electrode materials for sodium-ion batteries (SIBs). Herein, via first-principles calculations, we investigate the impact of Li substitution on the water stability of O-type NaLi0.33Mn0.67O2 (NLMO). In particular, the processes of H2O decomposition, Na+/H+ exchange reaction, and hydrogen (H) diffusion on NLMO (101), are specifically compared with those on NMO (101). The results demonstrate that H2O can decompose into O and H species at the Mn–Mn bridge site, but into OH and O species at the Na–Na bridge site, suggesting H2O is unstable on both surfaces. Thereafter, Na+/H+ exchange reaction becomes more difficult on NLMO (101), with the values of −2.73/−2.25 eV and −3.45/−2.82 eV in P1/P2 sites for NLMO (101) and NMO (101). Meanwhile, H diffusion on NLMO (101) is also more difficult due to hydrogen resistance from the subsurface to the bulk. The corresponding barriers are 2.17 and 1.63 eV. However for NMO (101), H can penetrate from the surface to the subsurface and continue to the bulk, with the lowest barrier of 0.61 eV (“Path III-12”) and 0.83 eV (“Path I-23”), respectively. The Columbic interaction between H and metal (Li, Mn, and Na) atoms plays a key role in hydrogen resistance. Notably, Li doping can increase the difficulties in the Na+/H+ exchange reaction and H diffusion on NLMO (101). For this reason, NLMO shows stronger water stability compared to NMO. The in-depth understanding of the water stability mechanism of NLMO can facilitate the future development of high-stable cathodes for SIBs.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0235686</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cathodes ; Decomposition reactions ; Diffusion barriers ; Electrode materials ; Exchanging ; First principles ; Penetration resistance ; Sodium ; Sodium-ion batteries ; Species diffusion ; Substitution reactions ; Transition metal oxides ; Water stability</subject><ispartof>Applied physics letters, 2024-12, Vol.125 (24)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-d15ca31ebaf5df78ed1ddd879e7e315d3c8c4609bc54812b76d9ab2b2c32fbab3</cites><orcidid>0000-0003-1366-8328 ; 0000-0003-0943-1483 ; 0000-0002-6896-0409 ; 0000-0002-1836-5441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0235686$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Qin, Wenjing</creatorcontrib><creatorcontrib>Sun, Baozhen</creatorcontrib><creatorcontrib>Wu, Musheng</creatorcontrib><creatorcontrib>Liu, Sanqiu</creatorcontrib><title>Analyzing the water stability mechanism in O-type NaLi0.33Mn0.67O2 as a cathode material for sodium-ion batteries</title><title>Applied physics letters</title><description>The moisture-induced instability of the sodium-layered transition metal oxides (NaxTMO2) presents a significant challenge in developing electrode materials for sodium-ion batteries (SIBs). Herein, via first-principles calculations, we investigate the impact of Li substitution on the water stability of O-type NaLi0.33Mn0.67O2 (NLMO). In particular, the processes of H2O decomposition, Na+/H+ exchange reaction, and hydrogen (H) diffusion on NLMO (101), are specifically compared with those on NMO (101). The results demonstrate that H2O can decompose into O and H species at the Mn–Mn bridge site, but into OH and O species at the Na–Na bridge site, suggesting H2O is unstable on both surfaces. Thereafter, Na+/H+ exchange reaction becomes more difficult on NLMO (101), with the values of −2.73/−2.25 eV and −3.45/−2.82 eV in P1/P2 sites for NLMO (101) and NMO (101). Meanwhile, H diffusion on NLMO (101) is also more difficult due to hydrogen resistance from the subsurface to the bulk. The corresponding barriers are 2.17 and 1.63 eV. However for NMO (101), H can penetrate from the surface to the subsurface and continue to the bulk, with the lowest barrier of 0.61 eV (“Path III-12”) and 0.83 eV (“Path I-23”), respectively. The Columbic interaction between H and metal (Li, Mn, and Na) atoms plays a key role in hydrogen resistance. Notably, Li doping can increase the difficulties in the Na+/H+ exchange reaction and H diffusion on NLMO (101). For this reason, NLMO shows stronger water stability compared to NMO. The in-depth understanding of the water stability mechanism of NLMO can facilitate the future development of high-stable cathodes for SIBs.</description><subject>Cathodes</subject><subject>Decomposition reactions</subject><subject>Diffusion barriers</subject><subject>Electrode materials</subject><subject>Exchanging</subject><subject>First principles</subject><subject>Penetration resistance</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Species diffusion</subject><subject>Substitution reactions</subject><subject>Transition metal oxides</subject><subject>Water stability</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFYX_oMBVwqJM3MzeSxL8QXRbnQd7jxip-TRZqZI_PWmtGtXl8P9-OAcQm45izlL4VHGTIBM8_SMzDjLsgg4z8_JjDEGUVpIfkmuvN9MUQqAGdktOmzGX9d907C29AeDHagPqFzjwkhbq9fYOd9S19FVFMatpR9YOhYDvHcsTrOVoOgpUo1h3RtL24PBYUPrfhL1xu3byPUdVRgOD-uvyUWNjbc3pzsnX89Pn8vXqFy9vC0XZaR5LkJkuNQI3Cqspamz3BpujMmzwmYWuDSgc52krFBaJjkXKktNgUoooUHUChXMyd3Rux363d76UG36_TC19RXwREAihYSJuj9Seui9H2xdbQfX4jBWnFWHRStZnRad2Icj67ULGKZW_8B_3y11fw</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Xu, Bo</creator><creator>Qin, Wenjing</creator><creator>Sun, Baozhen</creator><creator>Wu, Musheng</creator><creator>Liu, Sanqiu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1366-8328</orcidid><orcidid>https://orcid.org/0000-0003-0943-1483</orcidid><orcidid>https://orcid.org/0000-0002-6896-0409</orcidid><orcidid>https://orcid.org/0000-0002-1836-5441</orcidid></search><sort><creationdate>20241209</creationdate><title>Analyzing the water stability mechanism in O-type NaLi0.33Mn0.67O2 as a cathode material for sodium-ion batteries</title><author>Xu, Bo ; Qin, Wenjing ; Sun, Baozhen ; Wu, Musheng ; Liu, Sanqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-d15ca31ebaf5df78ed1ddd879e7e315d3c8c4609bc54812b76d9ab2b2c32fbab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Decomposition reactions</topic><topic>Diffusion barriers</topic><topic>Electrode materials</topic><topic>Exchanging</topic><topic>First principles</topic><topic>Penetration resistance</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Species diffusion</topic><topic>Substitution reactions</topic><topic>Transition metal oxides</topic><topic>Water stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Qin, Wenjing</creatorcontrib><creatorcontrib>Sun, Baozhen</creatorcontrib><creatorcontrib>Wu, Musheng</creatorcontrib><creatorcontrib>Liu, Sanqiu</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Bo</au><au>Qin, Wenjing</au><au>Sun, Baozhen</au><au>Wu, Musheng</au><au>Liu, Sanqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the water stability mechanism in O-type NaLi0.33Mn0.67O2 as a cathode material for sodium-ion batteries</atitle><jtitle>Applied physics letters</jtitle><date>2024-12-09</date><risdate>2024</risdate><volume>125</volume><issue>24</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The moisture-induced instability of the sodium-layered transition metal oxides (NaxTMO2) presents a significant challenge in developing electrode materials for sodium-ion batteries (SIBs). Herein, via first-principles calculations, we investigate the impact of Li substitution on the water stability of O-type NaLi0.33Mn0.67O2 (NLMO). In particular, the processes of H2O decomposition, Na+/H+ exchange reaction, and hydrogen (H) diffusion on NLMO (101), are specifically compared with those on NMO (101). The results demonstrate that H2O can decompose into O and H species at the Mn–Mn bridge site, but into OH and O species at the Na–Na bridge site, suggesting H2O is unstable on both surfaces. Thereafter, Na+/H+ exchange reaction becomes more difficult on NLMO (101), with the values of −2.73/−2.25 eV and −3.45/−2.82 eV in P1/P2 sites for NLMO (101) and NMO (101). Meanwhile, H diffusion on NLMO (101) is also more difficult due to hydrogen resistance from the subsurface to the bulk. The corresponding barriers are 2.17 and 1.63 eV. However for NMO (101), H can penetrate from the surface to the subsurface and continue to the bulk, with the lowest barrier of 0.61 eV (“Path III-12”) and 0.83 eV (“Path I-23”), respectively. The Columbic interaction between H and metal (Li, Mn, and Na) atoms plays a key role in hydrogen resistance. Notably, Li doping can increase the difficulties in the Na+/H+ exchange reaction and H diffusion on NLMO (101). For this reason, NLMO shows stronger water stability compared to NMO. The in-depth understanding of the water stability mechanism of NLMO can facilitate the future development of high-stable cathodes for SIBs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0235686</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1366-8328</orcidid><orcidid>https://orcid.org/0000-0003-0943-1483</orcidid><orcidid>https://orcid.org/0000-0002-6896-0409</orcidid><orcidid>https://orcid.org/0000-0002-1836-5441</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2024-12, Vol.125 (24) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0235686 |
source | AIP Journals Complete |
subjects | Cathodes Decomposition reactions Diffusion barriers Electrode materials Exchanging First principles Penetration resistance Sodium Sodium-ion batteries Species diffusion Substitution reactions Transition metal oxides Water stability |
title | Analyzing the water stability mechanism in O-type NaLi0.33Mn0.67O2 as a cathode material for sodium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20water%20stability%20mechanism%20in%20O-type%20NaLi0.33Mn0.67O2%20as%20a%20cathode%20material%20for%20sodium-ion%20batteries&rft.jtitle=Applied%20physics%20letters&rft.au=Xu,%20Bo&rft.date=2024-12-09&rft.volume=125&rft.issue=24&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0235686&rft_dat=%3Cproquest_cross%3E3142345253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142345253&rft_id=info:pmid/&rfr_iscdi=true |