The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects

One of the main features of near-neutral atmospheric boundary layer (ABL) turbulence is the positive vertical velocity skewness Skw above the roughness sublayer or the buffer region in smooth-walls. The Skw variations are receiving renewed interest in many climate-related parameterizations of the AB...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-11, Vol.36 (11)
Hauptverfasser: Buono, Elia, Katul, Gabriel, Heisel, Michael, Poggi, Davide, Peruzzi, Cosimo, Vettori, Davide, Manes, Costantino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Buono, Elia
Katul, Gabriel
Heisel, Michael
Poggi, Davide
Peruzzi, Cosimo
Vettori, Davide
Manes, Costantino
description One of the main features of near-neutral atmospheric boundary layer (ABL) turbulence is the positive vertical velocity skewness Skw above the roughness sublayer or the buffer region in smooth-walls. The Skw variations are receiving renewed interest in many climate-related parameterizations of the ABL given their significance to cloud formation and to testing sub-grid schemes for Large Eddy Simulations (LES). The vertical variations of Skw are explored here using wind tunnel and flume experiments collected above smooth, rough, and permeable-walls in the absence of buoyancy and Coriolis effects. These laboratory experiments form a necessary starting point to probe the canonical structure of Skw as they deal with a key limiting case (i.e., near-neutral conditions). Diagnostic models based on cumulant expansions, realizability constraints, and constant mass flux approach routinely employed in the convective boundary layer as well as prognostic models based on third-order budgets are used to explain variations in Skw for the idealized laboratory conditions. The failure of flux-gradient relations to model Skw from the gradients of the vertical velocity variance σw2 are explained and corrections based on models of energy transport offered. Novel links between the diagnostic and prognostic models are also featured, especially for the inertial term in the third-order budget of the vertical velocity fluctuation. The co-spectral properties of w′/σw vs w′2/σw2 are also presented for the first time to assess the dominant scales governing Skw in the inner and outer layers, where w′ is the fluctuating vertical velocity and σw is the vertical velocity standard deviation.
doi_str_mv 10.1063/5.0235007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0235007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128391961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-72b41eaa37988bbc7cf3210ccbd621e48204f30b0a351711ea99ccb6028db29a3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwdZJ0s5ujFL-g4KWelySbpanbpCbZlv33prRnTzMwDzPMi9A9gRkBzp7LGVBWAlQXaEKgFkXFOb889hUUnDNyjW5i3AAAE5RPULdaG7w3IVkt-2Jveq9tGnH8MQdnYsTW4ZSFTFsfd2sTrMbKD66VYcS9HE3AB5vWfkhYDX6UTo9YuhYvfLC-txGbrjM6xVt01ck-mrtznaLvt9fV4qNYfr1_Ll6WhSY1TUVF1ZwYKVkl6lopXemOUQJaq5ZTYuY1hXnHQIFkJalIpkLkIQdat4oKyabo4bR3F_zvYGJqNn4ILp9sGKE1E0RwktXjSengYwyma3bBbvNLDYHmGGNTNucYs3062ZiDkcl69w_-A7TPc0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128391961</pqid></control><display><type>article</type><title>The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects</title><source>AIP Journals Complete</source><creator>Buono, Elia ; Katul, Gabriel ; Heisel, Michael ; Poggi, Davide ; Peruzzi, Cosimo ; Vettori, Davide ; Manes, Costantino</creator><creatorcontrib>Buono, Elia ; Katul, Gabriel ; Heisel, Michael ; Poggi, Davide ; Peruzzi, Cosimo ; Vettori, Davide ; Manes, Costantino</creatorcontrib><description>One of the main features of near-neutral atmospheric boundary layer (ABL) turbulence is the positive vertical velocity skewness Skw above the roughness sublayer or the buffer region in smooth-walls. The Skw variations are receiving renewed interest in many climate-related parameterizations of the ABL given their significance to cloud formation and to testing sub-grid schemes for Large Eddy Simulations (LES). The vertical variations of Skw are explored here using wind tunnel and flume experiments collected above smooth, rough, and permeable-walls in the absence of buoyancy and Coriolis effects. These laboratory experiments form a necessary starting point to probe the canonical structure of Skw as they deal with a key limiting case (i.e., near-neutral conditions). Diagnostic models based on cumulant expansions, realizability constraints, and constant mass flux approach routinely employed in the convective boundary layer as well as prognostic models based on third-order budgets are used to explain variations in Skw for the idealized laboratory conditions. The failure of flux-gradient relations to model Skw from the gradients of the vertical velocity variance σw2 are explained and corrections based on models of energy transport offered. Novel links between the diagnostic and prognostic models are also featured, especially for the inertial term in the third-order budget of the vertical velocity fluctuation. The co-spectral properties of w′/σw vs w′2/σw2 are also presented for the first time to assess the dominant scales governing Skw in the inner and outer layers, where w′ is the fluctuating vertical velocity and σw is the vertical velocity standard deviation.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0235007</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Atmospheric boundary layer ; Budgets ; Buoyancy ; Coriolis effect ; Diagnostic systems ; Large eddy simulation ; Skewness ; Velocity ; Wind effects ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Physics of fluids (1994), 2024-11, Vol.36 (11)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-72b41eaa37988bbc7cf3210ccbd621e48204f30b0a351711ea99ccb6028db29a3</cites><orcidid>0009-0009-6666-1753 ; 0000-0002-3990-7449 ; 0000-0002-1418-9575 ; 0000-0001-5121-4197 ; 0000-0001-9768-3693 ; 0000-0003-0024-3574 ; 0000-0002-4200-5550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,791,4498,27905,27906</link.rule.ids></links><search><creatorcontrib>Buono, Elia</creatorcontrib><creatorcontrib>Katul, Gabriel</creatorcontrib><creatorcontrib>Heisel, Michael</creatorcontrib><creatorcontrib>Poggi, Davide</creatorcontrib><creatorcontrib>Peruzzi, Cosimo</creatorcontrib><creatorcontrib>Vettori, Davide</creatorcontrib><creatorcontrib>Manes, Costantino</creatorcontrib><title>The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects</title><title>Physics of fluids (1994)</title><description>One of the main features of near-neutral atmospheric boundary layer (ABL) turbulence is the positive vertical velocity skewness Skw above the roughness sublayer or the buffer region in smooth-walls. The Skw variations are receiving renewed interest in many climate-related parameterizations of the ABL given their significance to cloud formation and to testing sub-grid schemes for Large Eddy Simulations (LES). The vertical variations of Skw are explored here using wind tunnel and flume experiments collected above smooth, rough, and permeable-walls in the absence of buoyancy and Coriolis effects. These laboratory experiments form a necessary starting point to probe the canonical structure of Skw as they deal with a key limiting case (i.e., near-neutral conditions). Diagnostic models based on cumulant expansions, realizability constraints, and constant mass flux approach routinely employed in the convective boundary layer as well as prognostic models based on third-order budgets are used to explain variations in Skw for the idealized laboratory conditions. The failure of flux-gradient relations to model Skw from the gradients of the vertical velocity variance σw2 are explained and corrections based on models of energy transport offered. Novel links between the diagnostic and prognostic models are also featured, especially for the inertial term in the third-order budget of the vertical velocity fluctuation. The co-spectral properties of w′/σw vs w′2/σw2 are also presented for the first time to assess the dominant scales governing Skw in the inner and outer layers, where w′ is the fluctuating vertical velocity and σw is the vertical velocity standard deviation.</description><subject>Atmospheric boundary layer</subject><subject>Budgets</subject><subject>Buoyancy</subject><subject>Coriolis effect</subject><subject>Diagnostic systems</subject><subject>Large eddy simulation</subject><subject>Skewness</subject><subject>Velocity</subject><subject>Wind effects</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwdZJ0s5ujFL-g4KWelySbpanbpCbZlv33prRnTzMwDzPMi9A9gRkBzp7LGVBWAlQXaEKgFkXFOb889hUUnDNyjW5i3AAAE5RPULdaG7w3IVkt-2Jveq9tGnH8MQdnYsTW4ZSFTFsfd2sTrMbKD66VYcS9HE3AB5vWfkhYDX6UTo9YuhYvfLC-txGbrjM6xVt01ck-mrtznaLvt9fV4qNYfr1_Ll6WhSY1TUVF1ZwYKVkl6lopXemOUQJaq5ZTYuY1hXnHQIFkJalIpkLkIQdat4oKyabo4bR3F_zvYGJqNn4ILp9sGKE1E0RwktXjSengYwyma3bBbvNLDYHmGGNTNucYs3062ZiDkcl69w_-A7TPc0A</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Buono, Elia</creator><creator>Katul, Gabriel</creator><creator>Heisel, Michael</creator><creator>Poggi, Davide</creator><creator>Peruzzi, Cosimo</creator><creator>Vettori, Davide</creator><creator>Manes, Costantino</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-6666-1753</orcidid><orcidid>https://orcid.org/0000-0002-3990-7449</orcidid><orcidid>https://orcid.org/0000-0002-1418-9575</orcidid><orcidid>https://orcid.org/0000-0001-5121-4197</orcidid><orcidid>https://orcid.org/0000-0001-9768-3693</orcidid><orcidid>https://orcid.org/0000-0003-0024-3574</orcidid><orcidid>https://orcid.org/0000-0002-4200-5550</orcidid></search><sort><creationdate>202411</creationdate><title>The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects</title><author>Buono, Elia ; Katul, Gabriel ; Heisel, Michael ; Poggi, Davide ; Peruzzi, Cosimo ; Vettori, Davide ; Manes, Costantino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-72b41eaa37988bbc7cf3210ccbd621e48204f30b0a351711ea99ccb6028db29a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric boundary layer</topic><topic>Budgets</topic><topic>Buoyancy</topic><topic>Coriolis effect</topic><topic>Diagnostic systems</topic><topic>Large eddy simulation</topic><topic>Skewness</topic><topic>Velocity</topic><topic>Wind effects</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buono, Elia</creatorcontrib><creatorcontrib>Katul, Gabriel</creatorcontrib><creatorcontrib>Heisel, Michael</creatorcontrib><creatorcontrib>Poggi, Davide</creatorcontrib><creatorcontrib>Peruzzi, Cosimo</creatorcontrib><creatorcontrib>Vettori, Davide</creatorcontrib><creatorcontrib>Manes, Costantino</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buono, Elia</au><au>Katul, Gabriel</au><au>Heisel, Michael</au><au>Poggi, Davide</au><au>Peruzzi, Cosimo</au><au>Vettori, Davide</au><au>Manes, Costantino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>One of the main features of near-neutral atmospheric boundary layer (ABL) turbulence is the positive vertical velocity skewness Skw above the roughness sublayer or the buffer region in smooth-walls. The Skw variations are receiving renewed interest in many climate-related parameterizations of the ABL given their significance to cloud formation and to testing sub-grid schemes for Large Eddy Simulations (LES). The vertical variations of Skw are explored here using wind tunnel and flume experiments collected above smooth, rough, and permeable-walls in the absence of buoyancy and Coriolis effects. These laboratory experiments form a necessary starting point to probe the canonical structure of Skw as they deal with a key limiting case (i.e., near-neutral conditions). Diagnostic models based on cumulant expansions, realizability constraints, and constant mass flux approach routinely employed in the convective boundary layer as well as prognostic models based on third-order budgets are used to explain variations in Skw for the idealized laboratory conditions. The failure of flux-gradient relations to model Skw from the gradients of the vertical velocity variance σw2 are explained and corrections based on models of energy transport offered. Novel links between the diagnostic and prognostic models are also featured, especially for the inertial term in the third-order budget of the vertical velocity fluctuation. The co-spectral properties of w′/σw vs w′2/σw2 are also presented for the first time to assess the dominant scales governing Skw in the inner and outer layers, where w′ is the fluctuating vertical velocity and σw is the vertical velocity standard deviation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0235007</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0009-6666-1753</orcidid><orcidid>https://orcid.org/0000-0002-3990-7449</orcidid><orcidid>https://orcid.org/0000-0002-1418-9575</orcidid><orcidid>https://orcid.org/0000-0001-5121-4197</orcidid><orcidid>https://orcid.org/0000-0001-9768-3693</orcidid><orcidid>https://orcid.org/0000-0003-0024-3574</orcidid><orcidid>https://orcid.org/0000-0002-4200-5550</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-11, Vol.36 (11)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0235007
source AIP Journals Complete
subjects Atmospheric boundary layer
Budgets
Buoyancy
Coriolis effect
Diagnostic systems
Large eddy simulation
Skewness
Velocity
Wind effects
Wind tunnel testing
Wind tunnels
title The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20vertical-velocity%20skewness%20in%20the%20atmospheric%20boundary%20layer%20without%20buoyancy%20and%20Coriolis%20effects&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Buono,%20Elia&rft.date=2024-11&rft.volume=36&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0235007&rft_dat=%3Cproquest_cross%3E3128391961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128391961&rft_id=info:pmid/&rfr_iscdi=true