The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects
One of the main features of near-neutral atmospheric boundary layer (ABL) turbulence is the positive vertical velocity skewness Skw above the roughness sublayer or the buffer region in smooth-walls. The Skw variations are receiving renewed interest in many climate-related parameterizations of the AB...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-11, Vol.36 (11) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Buono, Elia Katul, Gabriel Heisel, Michael Poggi, Davide Peruzzi, Cosimo Vettori, Davide Manes, Costantino |
description | One of the main features of near-neutral atmospheric boundary layer (ABL) turbulence is the positive vertical velocity skewness
Skw above the roughness sublayer or the buffer region in smooth-walls. The
Skw variations are receiving renewed interest in many climate-related parameterizations of the ABL given their significance to cloud formation and to testing sub-grid schemes for Large Eddy Simulations (LES). The vertical variations of
Skw are explored here using wind tunnel and flume experiments collected above smooth, rough, and permeable-walls in the absence of buoyancy and Coriolis effects. These laboratory experiments form a necessary starting point to probe the canonical structure of
Skw as they deal with a key limiting case (i.e., near-neutral conditions). Diagnostic models based on cumulant expansions, realizability constraints, and constant mass flux approach routinely employed in the convective boundary layer as well as prognostic models based on third-order budgets are used to explain variations in
Skw for the idealized laboratory conditions. The failure of flux-gradient relations to model
Skw from the gradients of the vertical velocity variance
σw2 are explained and corrections based on models of energy transport offered. Novel links between the diagnostic and prognostic models are also featured, especially for the inertial term in the third-order budget of the vertical velocity fluctuation. The co-spectral properties of
w′/σw vs
w′2/σw2 are also presented for the first time to assess the dominant scales governing
Skw in the inner and outer layers, where
w′ is the fluctuating vertical velocity and
σw is the vertical velocity standard deviation. |
doi_str_mv | 10.1063/5.0235007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0235007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128391961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-72b41eaa37988bbc7cf3210ccbd621e48204f30b0a351711ea99ccb6028db29a3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwdZJ0s5ujFL-g4KWelySbpanbpCbZlv33prRnTzMwDzPMi9A9gRkBzp7LGVBWAlQXaEKgFkXFOb889hUUnDNyjW5i3AAAE5RPULdaG7w3IVkt-2Jveq9tGnH8MQdnYsTW4ZSFTFsfd2sTrMbKD66VYcS9HE3AB5vWfkhYDX6UTo9YuhYvfLC-txGbrjM6xVt01ck-mrtznaLvt9fV4qNYfr1_Ll6WhSY1TUVF1ZwYKVkl6lopXemOUQJaq5ZTYuY1hXnHQIFkJalIpkLkIQdat4oKyabo4bR3F_zvYGJqNn4ILp9sGKE1E0RwktXjSengYwyma3bBbvNLDYHmGGNTNucYs3062ZiDkcl69w_-A7TPc0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128391961</pqid></control><display><type>article</type><title>The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects</title><source>AIP Journals Complete</source><creator>Buono, Elia ; Katul, Gabriel ; Heisel, Michael ; Poggi, Davide ; Peruzzi, Cosimo ; Vettori, Davide ; Manes, Costantino</creator><creatorcontrib>Buono, Elia ; Katul, Gabriel ; Heisel, Michael ; Poggi, Davide ; Peruzzi, Cosimo ; Vettori, Davide ; Manes, Costantino</creatorcontrib><description>One of the main features of near-neutral atmospheric boundary layer (ABL) turbulence is the positive vertical velocity skewness
Skw above the roughness sublayer or the buffer region in smooth-walls. The
Skw variations are receiving renewed interest in many climate-related parameterizations of the ABL given their significance to cloud formation and to testing sub-grid schemes for Large Eddy Simulations (LES). The vertical variations of
Skw are explored here using wind tunnel and flume experiments collected above smooth, rough, and permeable-walls in the absence of buoyancy and Coriolis effects. These laboratory experiments form a necessary starting point to probe the canonical structure of
Skw as they deal with a key limiting case (i.e., near-neutral conditions). Diagnostic models based on cumulant expansions, realizability constraints, and constant mass flux approach routinely employed in the convective boundary layer as well as prognostic models based on third-order budgets are used to explain variations in
Skw for the idealized laboratory conditions. The failure of flux-gradient relations to model
Skw from the gradients of the vertical velocity variance
σw2 are explained and corrections based on models of energy transport offered. Novel links between the diagnostic and prognostic models are also featured, especially for the inertial term in the third-order budget of the vertical velocity fluctuation. The co-spectral properties of
w′/σw vs
w′2/σw2 are also presented for the first time to assess the dominant scales governing
Skw in the inner and outer layers, where
w′ is the fluctuating vertical velocity and
σw is the vertical velocity standard deviation.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0235007</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Atmospheric boundary layer ; Budgets ; Buoyancy ; Coriolis effect ; Diagnostic systems ; Large eddy simulation ; Skewness ; Velocity ; Wind effects ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Physics of fluids (1994), 2024-11, Vol.36 (11)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-72b41eaa37988bbc7cf3210ccbd621e48204f30b0a351711ea99ccb6028db29a3</cites><orcidid>0009-0009-6666-1753 ; 0000-0002-3990-7449 ; 0000-0002-1418-9575 ; 0000-0001-5121-4197 ; 0000-0001-9768-3693 ; 0000-0003-0024-3574 ; 0000-0002-4200-5550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,791,4498,27905,27906</link.rule.ids></links><search><creatorcontrib>Buono, Elia</creatorcontrib><creatorcontrib>Katul, Gabriel</creatorcontrib><creatorcontrib>Heisel, Michael</creatorcontrib><creatorcontrib>Poggi, Davide</creatorcontrib><creatorcontrib>Peruzzi, Cosimo</creatorcontrib><creatorcontrib>Vettori, Davide</creatorcontrib><creatorcontrib>Manes, Costantino</creatorcontrib><title>The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects</title><title>Physics of fluids (1994)</title><description>One of the main features of near-neutral atmospheric boundary layer (ABL) turbulence is the positive vertical velocity skewness
Skw above the roughness sublayer or the buffer region in smooth-walls. The
Skw variations are receiving renewed interest in many climate-related parameterizations of the ABL given their significance to cloud formation and to testing sub-grid schemes for Large Eddy Simulations (LES). The vertical variations of
Skw are explored here using wind tunnel and flume experiments collected above smooth, rough, and permeable-walls in the absence of buoyancy and Coriolis effects. These laboratory experiments form a necessary starting point to probe the canonical structure of
Skw as they deal with a key limiting case (i.e., near-neutral conditions). Diagnostic models based on cumulant expansions, realizability constraints, and constant mass flux approach routinely employed in the convective boundary layer as well as prognostic models based on third-order budgets are used to explain variations in
Skw for the idealized laboratory conditions. The failure of flux-gradient relations to model
Skw from the gradients of the vertical velocity variance
σw2 are explained and corrections based on models of energy transport offered. Novel links between the diagnostic and prognostic models are also featured, especially for the inertial term in the third-order budget of the vertical velocity fluctuation. The co-spectral properties of
w′/σw vs
w′2/σw2 are also presented for the first time to assess the dominant scales governing
Skw in the inner and outer layers, where
w′ is the fluctuating vertical velocity and
σw is the vertical velocity standard deviation.</description><subject>Atmospheric boundary layer</subject><subject>Budgets</subject><subject>Buoyancy</subject><subject>Coriolis effect</subject><subject>Diagnostic systems</subject><subject>Large eddy simulation</subject><subject>Skewness</subject><subject>Velocity</subject><subject>Wind effects</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwdZJ0s5ujFL-g4KWelySbpanbpCbZlv33prRnTzMwDzPMi9A9gRkBzp7LGVBWAlQXaEKgFkXFOb889hUUnDNyjW5i3AAAE5RPULdaG7w3IVkt-2Jveq9tGnH8MQdnYsTW4ZSFTFsfd2sTrMbKD66VYcS9HE3AB5vWfkhYDX6UTo9YuhYvfLC-txGbrjM6xVt01ck-mrtznaLvt9fV4qNYfr1_Ll6WhSY1TUVF1ZwYKVkl6lopXemOUQJaq5ZTYuY1hXnHQIFkJalIpkLkIQdat4oKyabo4bR3F_zvYGJqNn4ILp9sGKE1E0RwktXjSengYwyma3bBbvNLDYHmGGNTNucYs3062ZiDkcl69w_-A7TPc0A</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Buono, Elia</creator><creator>Katul, Gabriel</creator><creator>Heisel, Michael</creator><creator>Poggi, Davide</creator><creator>Peruzzi, Cosimo</creator><creator>Vettori, Davide</creator><creator>Manes, Costantino</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-6666-1753</orcidid><orcidid>https://orcid.org/0000-0002-3990-7449</orcidid><orcidid>https://orcid.org/0000-0002-1418-9575</orcidid><orcidid>https://orcid.org/0000-0001-5121-4197</orcidid><orcidid>https://orcid.org/0000-0001-9768-3693</orcidid><orcidid>https://orcid.org/0000-0003-0024-3574</orcidid><orcidid>https://orcid.org/0000-0002-4200-5550</orcidid></search><sort><creationdate>202411</creationdate><title>The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects</title><author>Buono, Elia ; Katul, Gabriel ; Heisel, Michael ; Poggi, Davide ; Peruzzi, Cosimo ; Vettori, Davide ; Manes, Costantino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-72b41eaa37988bbc7cf3210ccbd621e48204f30b0a351711ea99ccb6028db29a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric boundary layer</topic><topic>Budgets</topic><topic>Buoyancy</topic><topic>Coriolis effect</topic><topic>Diagnostic systems</topic><topic>Large eddy simulation</topic><topic>Skewness</topic><topic>Velocity</topic><topic>Wind effects</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buono, Elia</creatorcontrib><creatorcontrib>Katul, Gabriel</creatorcontrib><creatorcontrib>Heisel, Michael</creatorcontrib><creatorcontrib>Poggi, Davide</creatorcontrib><creatorcontrib>Peruzzi, Cosimo</creatorcontrib><creatorcontrib>Vettori, Davide</creatorcontrib><creatorcontrib>Manes, Costantino</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buono, Elia</au><au>Katul, Gabriel</au><au>Heisel, Michael</au><au>Poggi, Davide</au><au>Peruzzi, Cosimo</au><au>Vettori, Davide</au><au>Manes, Costantino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>One of the main features of near-neutral atmospheric boundary layer (ABL) turbulence is the positive vertical velocity skewness
Skw above the roughness sublayer or the buffer region in smooth-walls. The
Skw variations are receiving renewed interest in many climate-related parameterizations of the ABL given their significance to cloud formation and to testing sub-grid schemes for Large Eddy Simulations (LES). The vertical variations of
Skw are explored here using wind tunnel and flume experiments collected above smooth, rough, and permeable-walls in the absence of buoyancy and Coriolis effects. These laboratory experiments form a necessary starting point to probe the canonical structure of
Skw as they deal with a key limiting case (i.e., near-neutral conditions). Diagnostic models based on cumulant expansions, realizability constraints, and constant mass flux approach routinely employed in the convective boundary layer as well as prognostic models based on third-order budgets are used to explain variations in
Skw for the idealized laboratory conditions. The failure of flux-gradient relations to model
Skw from the gradients of the vertical velocity variance
σw2 are explained and corrections based on models of energy transport offered. Novel links between the diagnostic and prognostic models are also featured, especially for the inertial term in the third-order budget of the vertical velocity fluctuation. The co-spectral properties of
w′/σw vs
w′2/σw2 are also presented for the first time to assess the dominant scales governing
Skw in the inner and outer layers, where
w′ is the fluctuating vertical velocity and
σw is the vertical velocity standard deviation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0235007</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0009-6666-1753</orcidid><orcidid>https://orcid.org/0000-0002-3990-7449</orcidid><orcidid>https://orcid.org/0000-0002-1418-9575</orcidid><orcidid>https://orcid.org/0000-0001-5121-4197</orcidid><orcidid>https://orcid.org/0000-0001-9768-3693</orcidid><orcidid>https://orcid.org/0000-0003-0024-3574</orcidid><orcidid>https://orcid.org/0000-0002-4200-5550</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-11, Vol.36 (11) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0235007 |
source | AIP Journals Complete |
subjects | Atmospheric boundary layer Budgets Buoyancy Coriolis effect Diagnostic systems Large eddy simulation Skewness Velocity Wind effects Wind tunnel testing Wind tunnels |
title | The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20vertical-velocity%20skewness%20in%20the%20atmospheric%20boundary%20layer%20without%20buoyancy%20and%20Coriolis%20effects&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Buono,%20Elia&rft.date=2024-11&rft.volume=36&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0235007&rft_dat=%3Cproquest_cross%3E3128391961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128391961&rft_id=info:pmid/&rfr_iscdi=true |