A short trajectory is all you need: A transformer-based model for long-time dissipative quantum dynamics
In this Communication, we demonstrate that a deep artificial neural network based on a transformer architecture with self-attention layers can predict the long-time population dynamics of a quantum system coupled to a dissipative environment provided that the short-time population dynamics of the sy...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2024-11, Vol.161 (17) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this Communication, we demonstrate that a deep artificial neural network based on a transformer architecture with self-attention layers can predict the long-time population dynamics of a quantum system coupled to a dissipative environment provided that the short-time population dynamics of the system is known. The transformer neural network model developed in this work predicts the long-time dynamics of spin-boson model efficiently and very accurately across different regimes, from weak system–bath coupling to strong coupling non-Markovian regimes. Our model is more accurate than classical forecasting models, such as recurrent neural networks, and is comparable to the state-of-the-art models for simulating the dynamics of quantum dissipative systems based on kernel ridge regression. |
---|---|
ISSN: | 0021-9606 1089-7690 1089-7690 |
DOI: | 10.1063/5.0232871 |