High-quality temperature-complementary bulk acoustic wave resonators fabricated with strippable single-crystalline AlN films grown on sapphire

To satisfy the strict demands of 5G radio frequency communication, we propose high-quality, flexible temperature-compensated single-crystalline AlN film bulk acoustic wave resonators (TC-SABARs) based on a 6-inch sapphire substrate. An AlGaN sacrificial layer and a 600-nm-thick single-crystalline Al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-11, Vol.125 (21)
Hauptverfasser: Luo, Tianyou, Zhang, Yinuo, Chen, Zhipeng, Xu, Kaibin, Ouyang, Peidong, Hu, Han, Li, Chenyang, Zhu, Yuhan, Yi, Xinyan, Li, Guoqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Applied physics letters
container_volume 125
creator Luo, Tianyou
Zhang, Yinuo
Chen, Zhipeng
Xu, Kaibin
Ouyang, Peidong
Hu, Han
Li, Chenyang
Zhu, Yuhan
Yi, Xinyan
Li, Guoqiang
description To satisfy the strict demands of 5G radio frequency communication, we propose high-quality, flexible temperature-compensated single-crystalline AlN film bulk acoustic wave resonators (TC-SABARs) based on a 6-inch sapphire substrate. An AlGaN sacrificial layer and a 600-nm-thick single-crystalline AlN epitaxial layer are deposited on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). Two types of TC-SABARs are fabricated and their performances are compared with published results. The results indicate that one of the TC-SABARs has a maximum Bode Q of 3406, an effective coefficient ( Keff2) of 6.21%, and a temperature coefficient of frequency (TCF) of −9.5 ppm/°C. The other TC-SABAR exhibits a maximum Bode Q of 3022, a Keff2 of 5.99%, and a TCF of +0.7 ppm/°C. This performance can be attributed to the high-quality single-crystalline AlN film and the temperature-compensation structure with nonmetallic flip-chip bonding film transfer process and a thick SiO2 layer.
doi_str_mv 10.1063/5.0231483
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0231483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129833031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-d4b3cdf575e4afe78aa1985e1922a27ec2c99219336381ceb3fe1584ade7c3223</originalsourceid><addsrcrecordid>eNp9kMFKw0AURQdRsFYX_sGAK4XUmXlNkyyLqBWKbnQdXqYv7dRJJp2ZWPoTfrORunZ1uXC4Fw5j11JMpJjBfToRCuQ0hxM2kiLLEpAyP2UjIQQksyKV5-wihO1QUwUwYt8Ls94kux6tiQceqenIY-w9Jdo1naWG2oj-wKvefnLUrg_RaL7HL-KegmsxOh94jZU3GiOt-N7EDQ_Rm67DyhIPpl3bYc0fQkRrTUt8bl95bWwT-Nq7fctdywN23cZ4umRnNdpAV385Zh9Pj-8Pi2T59vzyMF8mWuYqJqtpBXpVp1lKU6wpyxFlkackC6VQZaSVLgolC4AZ5FJTBTXJNJ_iijINSsGY3Rx3O-92PYVYbl3v2-GyBKmKHECAHKjbI6W9C8FTXXbeNIOOUoryV3eZln-6B_buyAZtIkbj2n_gHygMgxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129833031</pqid></control><display><type>article</type><title>High-quality temperature-complementary bulk acoustic wave resonators fabricated with strippable single-crystalline AlN films grown on sapphire</title><source>AIP Journals Complete</source><creator>Luo, Tianyou ; Zhang, Yinuo ; Chen, Zhipeng ; Xu, Kaibin ; Ouyang, Peidong ; Hu, Han ; Li, Chenyang ; Zhu, Yuhan ; Yi, Xinyan ; Li, Guoqiang</creator><creatorcontrib>Luo, Tianyou ; Zhang, Yinuo ; Chen, Zhipeng ; Xu, Kaibin ; Ouyang, Peidong ; Hu, Han ; Li, Chenyang ; Zhu, Yuhan ; Yi, Xinyan ; Li, Guoqiang</creatorcontrib><description>To satisfy the strict demands of 5G radio frequency communication, we propose high-quality, flexible temperature-compensated single-crystalline AlN film bulk acoustic wave resonators (TC-SABARs) based on a 6-inch sapphire substrate. An AlGaN sacrificial layer and a 600-nm-thick single-crystalline AlN epitaxial layer are deposited on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). Two types of TC-SABARs are fabricated and their performances are compared with published results. The results indicate that one of the TC-SABARs has a maximum Bode Q of 3406, an effective coefficient ( Keff2) of 6.21%, and a temperature coefficient of frequency (TCF) of −9.5 ppm/°C. The other TC-SABAR exhibits a maximum Bode Q of 3022, a Keff2 of 5.99%, and a TCF of +0.7 ppm/°C. This performance can be attributed to the high-quality single-crystalline AlN film and the temperature-compensation structure with nonmetallic flip-chip bonding film transfer process and a thick SiO2 layer.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0231483</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic waves ; Aluminum gallium nitrides ; Metalorganic chemical vapor deposition ; Organic chemistry ; Resonators ; Sapphire ; Silicon dioxide ; Single crystals ; Substrates</subject><ispartof>Applied physics letters, 2024-11, Vol.125 (21)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-d4b3cdf575e4afe78aa1985e1922a27ec2c99219336381ceb3fe1584ade7c3223</cites><orcidid>0000-0003-2694-4061 ; 0000-0002-1493-6657 ; 0009-0005-6226-3820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0231483$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Luo, Tianyou</creatorcontrib><creatorcontrib>Zhang, Yinuo</creatorcontrib><creatorcontrib>Chen, Zhipeng</creatorcontrib><creatorcontrib>Xu, Kaibin</creatorcontrib><creatorcontrib>Ouyang, Peidong</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Li, Chenyang</creatorcontrib><creatorcontrib>Zhu, Yuhan</creatorcontrib><creatorcontrib>Yi, Xinyan</creatorcontrib><creatorcontrib>Li, Guoqiang</creatorcontrib><title>High-quality temperature-complementary bulk acoustic wave resonators fabricated with strippable single-crystalline AlN films grown on sapphire</title><title>Applied physics letters</title><description>To satisfy the strict demands of 5G radio frequency communication, we propose high-quality, flexible temperature-compensated single-crystalline AlN film bulk acoustic wave resonators (TC-SABARs) based on a 6-inch sapphire substrate. An AlGaN sacrificial layer and a 600-nm-thick single-crystalline AlN epitaxial layer are deposited on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). Two types of TC-SABARs are fabricated and their performances are compared with published results. The results indicate that one of the TC-SABARs has a maximum Bode Q of 3406, an effective coefficient ( Keff2) of 6.21%, and a temperature coefficient of frequency (TCF) of −9.5 ppm/°C. The other TC-SABAR exhibits a maximum Bode Q of 3022, a Keff2 of 5.99%, and a TCF of +0.7 ppm/°C. This performance can be attributed to the high-quality single-crystalline AlN film and the temperature-compensation structure with nonmetallic flip-chip bonding film transfer process and a thick SiO2 layer.</description><subject>Acoustic waves</subject><subject>Aluminum gallium nitrides</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Organic chemistry</subject><subject>Resonators</subject><subject>Sapphire</subject><subject>Silicon dioxide</subject><subject>Single crystals</subject><subject>Substrates</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AURQdRsFYX_sGAK4XUmXlNkyyLqBWKbnQdXqYv7dRJJp2ZWPoTfrORunZ1uXC4Fw5j11JMpJjBfToRCuQ0hxM2kiLLEpAyP2UjIQQksyKV5-wihO1QUwUwYt8Ls94kux6tiQceqenIY-w9Jdo1naWG2oj-wKvefnLUrg_RaL7HL-KegmsxOh94jZU3GiOt-N7EDQ_Rm67DyhIPpl3bYc0fQkRrTUt8bl95bWwT-Nq7fctdywN23cZ4umRnNdpAV385Zh9Pj-8Pi2T59vzyMF8mWuYqJqtpBXpVp1lKU6wpyxFlkackC6VQZaSVLgolC4AZ5FJTBTXJNJ_iijINSsGY3Rx3O-92PYVYbl3v2-GyBKmKHECAHKjbI6W9C8FTXXbeNIOOUoryV3eZln-6B_buyAZtIkbj2n_gHygMgxA</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Luo, Tianyou</creator><creator>Zhang, Yinuo</creator><creator>Chen, Zhipeng</creator><creator>Xu, Kaibin</creator><creator>Ouyang, Peidong</creator><creator>Hu, Han</creator><creator>Li, Chenyang</creator><creator>Zhu, Yuhan</creator><creator>Yi, Xinyan</creator><creator>Li, Guoqiang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2694-4061</orcidid><orcidid>https://orcid.org/0000-0002-1493-6657</orcidid><orcidid>https://orcid.org/0009-0005-6226-3820</orcidid></search><sort><creationdate>20241118</creationdate><title>High-quality temperature-complementary bulk acoustic wave resonators fabricated with strippable single-crystalline AlN films grown on sapphire</title><author>Luo, Tianyou ; Zhang, Yinuo ; Chen, Zhipeng ; Xu, Kaibin ; Ouyang, Peidong ; Hu, Han ; Li, Chenyang ; Zhu, Yuhan ; Yi, Xinyan ; Li, Guoqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-d4b3cdf575e4afe78aa1985e1922a27ec2c99219336381ceb3fe1584ade7c3223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic waves</topic><topic>Aluminum gallium nitrides</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Organic chemistry</topic><topic>Resonators</topic><topic>Sapphire</topic><topic>Silicon dioxide</topic><topic>Single crystals</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Tianyou</creatorcontrib><creatorcontrib>Zhang, Yinuo</creatorcontrib><creatorcontrib>Chen, Zhipeng</creatorcontrib><creatorcontrib>Xu, Kaibin</creatorcontrib><creatorcontrib>Ouyang, Peidong</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Li, Chenyang</creatorcontrib><creatorcontrib>Zhu, Yuhan</creatorcontrib><creatorcontrib>Yi, Xinyan</creatorcontrib><creatorcontrib>Li, Guoqiang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Tianyou</au><au>Zhang, Yinuo</au><au>Chen, Zhipeng</au><au>Xu, Kaibin</au><au>Ouyang, Peidong</au><au>Hu, Han</au><au>Li, Chenyang</au><au>Zhu, Yuhan</au><au>Yi, Xinyan</au><au>Li, Guoqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-quality temperature-complementary bulk acoustic wave resonators fabricated with strippable single-crystalline AlN films grown on sapphire</atitle><jtitle>Applied physics letters</jtitle><date>2024-11-18</date><risdate>2024</risdate><volume>125</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>To satisfy the strict demands of 5G radio frequency communication, we propose high-quality, flexible temperature-compensated single-crystalline AlN film bulk acoustic wave resonators (TC-SABARs) based on a 6-inch sapphire substrate. An AlGaN sacrificial layer and a 600-nm-thick single-crystalline AlN epitaxial layer are deposited on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). Two types of TC-SABARs are fabricated and their performances are compared with published results. The results indicate that one of the TC-SABARs has a maximum Bode Q of 3406, an effective coefficient ( Keff2) of 6.21%, and a temperature coefficient of frequency (TCF) of −9.5 ppm/°C. The other TC-SABAR exhibits a maximum Bode Q of 3022, a Keff2 of 5.99%, and a TCF of +0.7 ppm/°C. This performance can be attributed to the high-quality single-crystalline AlN film and the temperature-compensation structure with nonmetallic flip-chip bonding film transfer process and a thick SiO2 layer.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0231483</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2694-4061</orcidid><orcidid>https://orcid.org/0000-0002-1493-6657</orcidid><orcidid>https://orcid.org/0009-0005-6226-3820</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-11, Vol.125 (21)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0231483
source AIP Journals Complete
subjects Acoustic waves
Aluminum gallium nitrides
Metalorganic chemical vapor deposition
Organic chemistry
Resonators
Sapphire
Silicon dioxide
Single crystals
Substrates
title High-quality temperature-complementary bulk acoustic wave resonators fabricated with strippable single-crystalline AlN films grown on sapphire
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-quality%20temperature-complementary%20bulk%20acoustic%20wave%20resonators%20fabricated%20with%20strippable%20single-crystalline%20AlN%20films%20grown%20on%20sapphire&rft.jtitle=Applied%20physics%20letters&rft.au=Luo,%20Tianyou&rft.date=2024-11-18&rft.volume=125&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0231483&rft_dat=%3Cproquest_cross%3E3129833031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129833031&rft_id=info:pmid/&rfr_iscdi=true