High-quality temperature-complementary bulk acoustic wave resonators fabricated with strippable single-crystalline AlN films grown on sapphire
To satisfy the strict demands of 5G radio frequency communication, we propose high-quality, flexible temperature-compensated single-crystalline AlN film bulk acoustic wave resonators (TC-SABARs) based on a 6-inch sapphire substrate. An AlGaN sacrificial layer and a 600-nm-thick single-crystalline Al...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-11, Vol.125 (21) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 125 |
creator | Luo, Tianyou Zhang, Yinuo Chen, Zhipeng Xu, Kaibin Ouyang, Peidong Hu, Han Li, Chenyang Zhu, Yuhan Yi, Xinyan Li, Guoqiang |
description | To satisfy the strict demands of 5G radio frequency communication, we propose high-quality, flexible temperature-compensated single-crystalline AlN film bulk acoustic wave resonators (TC-SABARs) based on a 6-inch sapphire substrate. An AlGaN sacrificial layer and a 600-nm-thick single-crystalline AlN epitaxial layer are deposited on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). Two types of TC-SABARs are fabricated and their performances are compared with published results. The results indicate that one of the TC-SABARs has a maximum Bode Q of 3406, an effective coefficient (
Keff2) of 6.21%, and a temperature coefficient of frequency (TCF) of −9.5 ppm/°C. The other TC-SABAR exhibits a maximum Bode Q of 3022, a
Keff2 of 5.99%, and a TCF of +0.7 ppm/°C. This performance can be attributed to the high-quality single-crystalline AlN film and the temperature-compensation structure with nonmetallic flip-chip bonding film transfer process and a thick SiO2 layer. |
doi_str_mv | 10.1063/5.0231483 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0231483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129833031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-d4b3cdf575e4afe78aa1985e1922a27ec2c99219336381ceb3fe1584ade7c3223</originalsourceid><addsrcrecordid>eNp9kMFKw0AURQdRsFYX_sGAK4XUmXlNkyyLqBWKbnQdXqYv7dRJJp2ZWPoTfrORunZ1uXC4Fw5j11JMpJjBfToRCuQ0hxM2kiLLEpAyP2UjIQQksyKV5-wihO1QUwUwYt8Ls94kux6tiQceqenIY-w9Jdo1naWG2oj-wKvefnLUrg_RaL7HL-KegmsxOh94jZU3GiOt-N7EDQ_Rm67DyhIPpl3bYc0fQkRrTUt8bl95bWwT-Nq7fctdywN23cZ4umRnNdpAV385Zh9Pj-8Pi2T59vzyMF8mWuYqJqtpBXpVp1lKU6wpyxFlkackC6VQZaSVLgolC4AZ5FJTBTXJNJ_iijINSsGY3Rx3O-92PYVYbl3v2-GyBKmKHECAHKjbI6W9C8FTXXbeNIOOUoryV3eZln-6B_buyAZtIkbj2n_gHygMgxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129833031</pqid></control><display><type>article</type><title>High-quality temperature-complementary bulk acoustic wave resonators fabricated with strippable single-crystalline AlN films grown on sapphire</title><source>AIP Journals Complete</source><creator>Luo, Tianyou ; Zhang, Yinuo ; Chen, Zhipeng ; Xu, Kaibin ; Ouyang, Peidong ; Hu, Han ; Li, Chenyang ; Zhu, Yuhan ; Yi, Xinyan ; Li, Guoqiang</creator><creatorcontrib>Luo, Tianyou ; Zhang, Yinuo ; Chen, Zhipeng ; Xu, Kaibin ; Ouyang, Peidong ; Hu, Han ; Li, Chenyang ; Zhu, Yuhan ; Yi, Xinyan ; Li, Guoqiang</creatorcontrib><description>To satisfy the strict demands of 5G radio frequency communication, we propose high-quality, flexible temperature-compensated single-crystalline AlN film bulk acoustic wave resonators (TC-SABARs) based on a 6-inch sapphire substrate. An AlGaN sacrificial layer and a 600-nm-thick single-crystalline AlN epitaxial layer are deposited on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). Two types of TC-SABARs are fabricated and their performances are compared with published results. The results indicate that one of the TC-SABARs has a maximum Bode Q of 3406, an effective coefficient (
Keff2) of 6.21%, and a temperature coefficient of frequency (TCF) of −9.5 ppm/°C. The other TC-SABAR exhibits a maximum Bode Q of 3022, a
Keff2 of 5.99%, and a TCF of +0.7 ppm/°C. This performance can be attributed to the high-quality single-crystalline AlN film and the temperature-compensation structure with nonmetallic flip-chip bonding film transfer process and a thick SiO2 layer.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0231483</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic waves ; Aluminum gallium nitrides ; Metalorganic chemical vapor deposition ; Organic chemistry ; Resonators ; Sapphire ; Silicon dioxide ; Single crystals ; Substrates</subject><ispartof>Applied physics letters, 2024-11, Vol.125 (21)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-d4b3cdf575e4afe78aa1985e1922a27ec2c99219336381ceb3fe1584ade7c3223</cites><orcidid>0000-0003-2694-4061 ; 0000-0002-1493-6657 ; 0009-0005-6226-3820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0231483$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Luo, Tianyou</creatorcontrib><creatorcontrib>Zhang, Yinuo</creatorcontrib><creatorcontrib>Chen, Zhipeng</creatorcontrib><creatorcontrib>Xu, Kaibin</creatorcontrib><creatorcontrib>Ouyang, Peidong</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Li, Chenyang</creatorcontrib><creatorcontrib>Zhu, Yuhan</creatorcontrib><creatorcontrib>Yi, Xinyan</creatorcontrib><creatorcontrib>Li, Guoqiang</creatorcontrib><title>High-quality temperature-complementary bulk acoustic wave resonators fabricated with strippable single-crystalline AlN films grown on sapphire</title><title>Applied physics letters</title><description>To satisfy the strict demands of 5G radio frequency communication, we propose high-quality, flexible temperature-compensated single-crystalline AlN film bulk acoustic wave resonators (TC-SABARs) based on a 6-inch sapphire substrate. An AlGaN sacrificial layer and a 600-nm-thick single-crystalline AlN epitaxial layer are deposited on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). Two types of TC-SABARs are fabricated and their performances are compared with published results. The results indicate that one of the TC-SABARs has a maximum Bode Q of 3406, an effective coefficient (
Keff2) of 6.21%, and a temperature coefficient of frequency (TCF) of −9.5 ppm/°C. The other TC-SABAR exhibits a maximum Bode Q of 3022, a
Keff2 of 5.99%, and a TCF of +0.7 ppm/°C. This performance can be attributed to the high-quality single-crystalline AlN film and the temperature-compensation structure with nonmetallic flip-chip bonding film transfer process and a thick SiO2 layer.</description><subject>Acoustic waves</subject><subject>Aluminum gallium nitrides</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Organic chemistry</subject><subject>Resonators</subject><subject>Sapphire</subject><subject>Silicon dioxide</subject><subject>Single crystals</subject><subject>Substrates</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AURQdRsFYX_sGAK4XUmXlNkyyLqBWKbnQdXqYv7dRJJp2ZWPoTfrORunZ1uXC4Fw5j11JMpJjBfToRCuQ0hxM2kiLLEpAyP2UjIQQksyKV5-wihO1QUwUwYt8Ls94kux6tiQceqenIY-w9Jdo1naWG2oj-wKvefnLUrg_RaL7HL-KegmsxOh94jZU3GiOt-N7EDQ_Rm67DyhIPpl3bYc0fQkRrTUt8bl95bWwT-Nq7fctdywN23cZ4umRnNdpAV385Zh9Pj-8Pi2T59vzyMF8mWuYqJqtpBXpVp1lKU6wpyxFlkackC6VQZaSVLgolC4AZ5FJTBTXJNJ_iijINSsGY3Rx3O-92PYVYbl3v2-GyBKmKHECAHKjbI6W9C8FTXXbeNIOOUoryV3eZln-6B_buyAZtIkbj2n_gHygMgxA</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Luo, Tianyou</creator><creator>Zhang, Yinuo</creator><creator>Chen, Zhipeng</creator><creator>Xu, Kaibin</creator><creator>Ouyang, Peidong</creator><creator>Hu, Han</creator><creator>Li, Chenyang</creator><creator>Zhu, Yuhan</creator><creator>Yi, Xinyan</creator><creator>Li, Guoqiang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2694-4061</orcidid><orcidid>https://orcid.org/0000-0002-1493-6657</orcidid><orcidid>https://orcid.org/0009-0005-6226-3820</orcidid></search><sort><creationdate>20241118</creationdate><title>High-quality temperature-complementary bulk acoustic wave resonators fabricated with strippable single-crystalline AlN films grown on sapphire</title><author>Luo, Tianyou ; Zhang, Yinuo ; Chen, Zhipeng ; Xu, Kaibin ; Ouyang, Peidong ; Hu, Han ; Li, Chenyang ; Zhu, Yuhan ; Yi, Xinyan ; Li, Guoqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-d4b3cdf575e4afe78aa1985e1922a27ec2c99219336381ceb3fe1584ade7c3223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic waves</topic><topic>Aluminum gallium nitrides</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Organic chemistry</topic><topic>Resonators</topic><topic>Sapphire</topic><topic>Silicon dioxide</topic><topic>Single crystals</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Tianyou</creatorcontrib><creatorcontrib>Zhang, Yinuo</creatorcontrib><creatorcontrib>Chen, Zhipeng</creatorcontrib><creatorcontrib>Xu, Kaibin</creatorcontrib><creatorcontrib>Ouyang, Peidong</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Li, Chenyang</creatorcontrib><creatorcontrib>Zhu, Yuhan</creatorcontrib><creatorcontrib>Yi, Xinyan</creatorcontrib><creatorcontrib>Li, Guoqiang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Tianyou</au><au>Zhang, Yinuo</au><au>Chen, Zhipeng</au><au>Xu, Kaibin</au><au>Ouyang, Peidong</au><au>Hu, Han</au><au>Li, Chenyang</au><au>Zhu, Yuhan</au><au>Yi, Xinyan</au><au>Li, Guoqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-quality temperature-complementary bulk acoustic wave resonators fabricated with strippable single-crystalline AlN films grown on sapphire</atitle><jtitle>Applied physics letters</jtitle><date>2024-11-18</date><risdate>2024</risdate><volume>125</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>To satisfy the strict demands of 5G radio frequency communication, we propose high-quality, flexible temperature-compensated single-crystalline AlN film bulk acoustic wave resonators (TC-SABARs) based on a 6-inch sapphire substrate. An AlGaN sacrificial layer and a 600-nm-thick single-crystalline AlN epitaxial layer are deposited on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). Two types of TC-SABARs are fabricated and their performances are compared with published results. The results indicate that one of the TC-SABARs has a maximum Bode Q of 3406, an effective coefficient (
Keff2) of 6.21%, and a temperature coefficient of frequency (TCF) of −9.5 ppm/°C. The other TC-SABAR exhibits a maximum Bode Q of 3022, a
Keff2 of 5.99%, and a TCF of +0.7 ppm/°C. This performance can be attributed to the high-quality single-crystalline AlN film and the temperature-compensation structure with nonmetallic flip-chip bonding film transfer process and a thick SiO2 layer.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0231483</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2694-4061</orcidid><orcidid>https://orcid.org/0000-0002-1493-6657</orcidid><orcidid>https://orcid.org/0009-0005-6226-3820</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2024-11, Vol.125 (21) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0231483 |
source | AIP Journals Complete |
subjects | Acoustic waves Aluminum gallium nitrides Metalorganic chemical vapor deposition Organic chemistry Resonators Sapphire Silicon dioxide Single crystals Substrates |
title | High-quality temperature-complementary bulk acoustic wave resonators fabricated with strippable single-crystalline AlN films grown on sapphire |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-quality%20temperature-complementary%20bulk%20acoustic%20wave%20resonators%20fabricated%20with%20strippable%20single-crystalline%20AlN%20films%20grown%20on%20sapphire&rft.jtitle=Applied%20physics%20letters&rft.au=Luo,%20Tianyou&rft.date=2024-11-18&rft.volume=125&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0231483&rft_dat=%3Cproquest_cross%3E3129833031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129833031&rft_id=info:pmid/&rfr_iscdi=true |