Modeling interface roughness scattering with incorporation of potential energy and wave-function fluctuations: Enhancing mobility in AlN/GaN digital alloys
Interface roughness (IFR) scattering significantly impacts the mobility of two-dimensional electron gases (2DEGs) in heterostructures. While existing models for IFR scattering have advanced our understanding, they have notable limitations. The model developed by Jin et al. in 2007, while incorporati...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2024-12, Vol.136 (24) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 136 |
creator | Hong, Gongyi Chaney, Alexander Charnas, Adam Kim, Yunjo Asel, Thaddeus J. Neal, Adam T. Mou, Shin |
description | Interface roughness (IFR) scattering significantly impacts the mobility of two-dimensional electron gases (2DEGs) in heterostructures. While existing models for IFR scattering have advanced our understanding, they have notable limitations. The model developed by Jin et al. in 2007, while incorporating a realistic barrier height and roughness-induced changes in potential and subband wave-functions, employs a first-order roughness expansion. The formulation introduced by Lizzit et al. in 2014, although avoiding the first-order approximation for better higher-order effect modeling, omits IFR-induced change in electron density distribution. To address these limitations, we introduce a novel model that comprehensively accounts for all IFR-induced effects while avoiding any expansion approximations, by incorporating IFR-modified subband energies and wave-functions obtained from the numerical solution of the Schrödinger equation during the calculation of IFR scattering matrix elements. In addition, we have included models for other relevant scattering mechanisms, including charged dislocation lines, ionized impurities, acoustic phonons, and polar optical phonons. A comprehensive numerical analysis of carrier mobility has been performed for an AlN/GaN high electron mobility transistor, yielding results consistent with experimental data. Furthermore, to investigate the impact of device architecture on 2DEG mobility, we study the effects of layer thickness and modulation doping profiles in AlN/GaN digital alloys. Our findings reveal strategies for engineering high mobility at elevated 2DEG concentrations, potentially advancing the development of high-performance semiconductor devices. |
doi_str_mv | 10.1063/5.0229570 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0229570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149596063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c970-5fe8d680540223acfe32c03e807d06dc6ff1126cdfa5b53b11aecbcfa349d7173</originalsourceid><addsrcrecordid>eNp9kE9PwyAYh4nRxDk9-A1IPGnSDcpoi7dlmdNkzsvuDaPQsXRQgbr0s_hlZX_Onkhenvd58_sB8IjRCKOMjOkIpSmjOboCA4wKluSUomswQCjFScFydgvuvN8hhHFB2AD8ftpKNtrUUJsgneJCQme7emuk99ALHuL0-H3QYRsZYV1rHQ_aGmgVbG2QJmjeQGmkq3vITQUP_EcmqjPiRKmmE6E7bfhXODdbbsRRuLcb3ejQRymcNqvxgq9gpWsdoow3je39PbhRvPHy4fIOwfptvp69J8uvxcdsukwEy1FClSyqrEB0EpMTLpQkqUBEFiivUFaJTCmM00xUitMNJRuMuRQboTiZsCrHORmCp7O2dfa7kz6UO9s5Ey-WBE8YZVksNlLPZ0o4672Tqmyd3nPXlxiVx-pLWl6qj-zLmfUixjkm_wf-A-z2h18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149596063</pqid></control><display><type>article</type><title>Modeling interface roughness scattering with incorporation of potential energy and wave-function fluctuations: Enhancing mobility in AlN/GaN digital alloys</title><source>Alma/SFX Local Collection</source><creator>Hong, Gongyi ; Chaney, Alexander ; Charnas, Adam ; Kim, Yunjo ; Asel, Thaddeus J. ; Neal, Adam T. ; Mou, Shin</creator><creatorcontrib>Hong, Gongyi ; Chaney, Alexander ; Charnas, Adam ; Kim, Yunjo ; Asel, Thaddeus J. ; Neal, Adam T. ; Mou, Shin</creatorcontrib><description>Interface roughness (IFR) scattering significantly impacts the mobility of two-dimensional electron gases (2DEGs) in heterostructures. While existing models for IFR scattering have advanced our understanding, they have notable limitations. The model developed by Jin et al. in 2007, while incorporating a realistic barrier height and roughness-induced changes in potential and subband wave-functions, employs a first-order roughness expansion. The formulation introduced by Lizzit et al. in 2014, although avoiding the first-order approximation for better higher-order effect modeling, omits IFR-induced change in electron density distribution. To address these limitations, we introduce a novel model that comprehensively accounts for all IFR-induced effects while avoiding any expansion approximations, by incorporating IFR-modified subband energies and wave-functions obtained from the numerical solution of the Schrödinger equation during the calculation of IFR scattering matrix elements. In addition, we have included models for other relevant scattering mechanisms, including charged dislocation lines, ionized impurities, acoustic phonons, and polar optical phonons. A comprehensive numerical analysis of carrier mobility has been performed for an AlN/GaN high electron mobility transistor, yielding results consistent with experimental data. Furthermore, to investigate the impact of device architecture on 2DEG mobility, we study the effects of layer thickness and modulation doping profiles in AlN/GaN digital alloys. Our findings reveal strategies for engineering high mobility at elevated 2DEG concentrations, potentially advancing the development of high-performance semiconductor devices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0229570</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum nitride ; Approximation ; Carrier mobility ; Density distribution ; Electron density ; Gallium nitrides ; Heterostructures ; High electron mobility transistors ; Interface roughness ; Mathematical analysis ; Modulation doping ; Numerical analysis ; Phonons ; Potential energy ; S matrix theory ; Schrodinger equation ; Semiconductor devices ; Thickness</subject><ispartof>Journal of applied physics, 2024-12, Vol.136 (24)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c970-5fe8d680540223acfe32c03e807d06dc6ff1126cdfa5b53b11aecbcfa349d7173</cites><orcidid>0000-0003-1229-6286 ; 0000-0001-6803-0247 ; 0000-0002-3241-6751 ; 0000-0002-2282-4428 ; 0000-0001-7535-1428 ; 0000-0002-6529-405X ; 0000-0001-5228-2562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Hong, Gongyi</creatorcontrib><creatorcontrib>Chaney, Alexander</creatorcontrib><creatorcontrib>Charnas, Adam</creatorcontrib><creatorcontrib>Kim, Yunjo</creatorcontrib><creatorcontrib>Asel, Thaddeus J.</creatorcontrib><creatorcontrib>Neal, Adam T.</creatorcontrib><creatorcontrib>Mou, Shin</creatorcontrib><title>Modeling interface roughness scattering with incorporation of potential energy and wave-function fluctuations: Enhancing mobility in AlN/GaN digital alloys</title><title>Journal of applied physics</title><description>Interface roughness (IFR) scattering significantly impacts the mobility of two-dimensional electron gases (2DEGs) in heterostructures. While existing models for IFR scattering have advanced our understanding, they have notable limitations. The model developed by Jin et al. in 2007, while incorporating a realistic barrier height and roughness-induced changes in potential and subband wave-functions, employs a first-order roughness expansion. The formulation introduced by Lizzit et al. in 2014, although avoiding the first-order approximation for better higher-order effect modeling, omits IFR-induced change in electron density distribution. To address these limitations, we introduce a novel model that comprehensively accounts for all IFR-induced effects while avoiding any expansion approximations, by incorporating IFR-modified subband energies and wave-functions obtained from the numerical solution of the Schrödinger equation during the calculation of IFR scattering matrix elements. In addition, we have included models for other relevant scattering mechanisms, including charged dislocation lines, ionized impurities, acoustic phonons, and polar optical phonons. A comprehensive numerical analysis of carrier mobility has been performed for an AlN/GaN high electron mobility transistor, yielding results consistent with experimental data. Furthermore, to investigate the impact of device architecture on 2DEG mobility, we study the effects of layer thickness and modulation doping profiles in AlN/GaN digital alloys. Our findings reveal strategies for engineering high mobility at elevated 2DEG concentrations, potentially advancing the development of high-performance semiconductor devices.</description><subject>Aluminum nitride</subject><subject>Approximation</subject><subject>Carrier mobility</subject><subject>Density distribution</subject><subject>Electron density</subject><subject>Gallium nitrides</subject><subject>Heterostructures</subject><subject>High electron mobility transistors</subject><subject>Interface roughness</subject><subject>Mathematical analysis</subject><subject>Modulation doping</subject><subject>Numerical analysis</subject><subject>Phonons</subject><subject>Potential energy</subject><subject>S matrix theory</subject><subject>Schrodinger equation</subject><subject>Semiconductor devices</subject><subject>Thickness</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwyAYh4nRxDk9-A1IPGnSDcpoi7dlmdNkzsvuDaPQsXRQgbr0s_hlZX_Onkhenvd58_sB8IjRCKOMjOkIpSmjOboCA4wKluSUomswQCjFScFydgvuvN8hhHFB2AD8ftpKNtrUUJsgneJCQme7emuk99ALHuL0-H3QYRsZYV1rHQ_aGmgVbG2QJmjeQGmkq3vITQUP_EcmqjPiRKmmE6E7bfhXODdbbsRRuLcb3ejQRymcNqvxgq9gpWsdoow3je39PbhRvPHy4fIOwfptvp69J8uvxcdsukwEy1FClSyqrEB0EpMTLpQkqUBEFiivUFaJTCmM00xUitMNJRuMuRQboTiZsCrHORmCp7O2dfa7kz6UO9s5Ey-WBE8YZVksNlLPZ0o4672Tqmyd3nPXlxiVx-pLWl6qj-zLmfUixjkm_wf-A-z2h18</recordid><startdate>20241228</startdate><enddate>20241228</enddate><creator>Hong, Gongyi</creator><creator>Chaney, Alexander</creator><creator>Charnas, Adam</creator><creator>Kim, Yunjo</creator><creator>Asel, Thaddeus J.</creator><creator>Neal, Adam T.</creator><creator>Mou, Shin</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1229-6286</orcidid><orcidid>https://orcid.org/0000-0001-6803-0247</orcidid><orcidid>https://orcid.org/0000-0002-3241-6751</orcidid><orcidid>https://orcid.org/0000-0002-2282-4428</orcidid><orcidid>https://orcid.org/0000-0001-7535-1428</orcidid><orcidid>https://orcid.org/0000-0002-6529-405X</orcidid><orcidid>https://orcid.org/0000-0001-5228-2562</orcidid></search><sort><creationdate>20241228</creationdate><title>Modeling interface roughness scattering with incorporation of potential energy and wave-function fluctuations: Enhancing mobility in AlN/GaN digital alloys</title><author>Hong, Gongyi ; Chaney, Alexander ; Charnas, Adam ; Kim, Yunjo ; Asel, Thaddeus J. ; Neal, Adam T. ; Mou, Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c970-5fe8d680540223acfe32c03e807d06dc6ff1126cdfa5b53b11aecbcfa349d7173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum nitride</topic><topic>Approximation</topic><topic>Carrier mobility</topic><topic>Density distribution</topic><topic>Electron density</topic><topic>Gallium nitrides</topic><topic>Heterostructures</topic><topic>High electron mobility transistors</topic><topic>Interface roughness</topic><topic>Mathematical analysis</topic><topic>Modulation doping</topic><topic>Numerical analysis</topic><topic>Phonons</topic><topic>Potential energy</topic><topic>S matrix theory</topic><topic>Schrodinger equation</topic><topic>Semiconductor devices</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Gongyi</creatorcontrib><creatorcontrib>Chaney, Alexander</creatorcontrib><creatorcontrib>Charnas, Adam</creatorcontrib><creatorcontrib>Kim, Yunjo</creatorcontrib><creatorcontrib>Asel, Thaddeus J.</creatorcontrib><creatorcontrib>Neal, Adam T.</creatorcontrib><creatorcontrib>Mou, Shin</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Gongyi</au><au>Chaney, Alexander</au><au>Charnas, Adam</au><au>Kim, Yunjo</au><au>Asel, Thaddeus J.</au><au>Neal, Adam T.</au><au>Mou, Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling interface roughness scattering with incorporation of potential energy and wave-function fluctuations: Enhancing mobility in AlN/GaN digital alloys</atitle><jtitle>Journal of applied physics</jtitle><date>2024-12-28</date><risdate>2024</risdate><volume>136</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Interface roughness (IFR) scattering significantly impacts the mobility of two-dimensional electron gases (2DEGs) in heterostructures. While existing models for IFR scattering have advanced our understanding, they have notable limitations. The model developed by Jin et al. in 2007, while incorporating a realistic barrier height and roughness-induced changes in potential and subband wave-functions, employs a first-order roughness expansion. The formulation introduced by Lizzit et al. in 2014, although avoiding the first-order approximation for better higher-order effect modeling, omits IFR-induced change in electron density distribution. To address these limitations, we introduce a novel model that comprehensively accounts for all IFR-induced effects while avoiding any expansion approximations, by incorporating IFR-modified subband energies and wave-functions obtained from the numerical solution of the Schrödinger equation during the calculation of IFR scattering matrix elements. In addition, we have included models for other relevant scattering mechanisms, including charged dislocation lines, ionized impurities, acoustic phonons, and polar optical phonons. A comprehensive numerical analysis of carrier mobility has been performed for an AlN/GaN high electron mobility transistor, yielding results consistent with experimental data. Furthermore, to investigate the impact of device architecture on 2DEG mobility, we study the effects of layer thickness and modulation doping profiles in AlN/GaN digital alloys. Our findings reveal strategies for engineering high mobility at elevated 2DEG concentrations, potentially advancing the development of high-performance semiconductor devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0229570</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1229-6286</orcidid><orcidid>https://orcid.org/0000-0001-6803-0247</orcidid><orcidid>https://orcid.org/0000-0002-3241-6751</orcidid><orcidid>https://orcid.org/0000-0002-2282-4428</orcidid><orcidid>https://orcid.org/0000-0001-7535-1428</orcidid><orcidid>https://orcid.org/0000-0002-6529-405X</orcidid><orcidid>https://orcid.org/0000-0001-5228-2562</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-12, Vol.136 (24) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0229570 |
source | Alma/SFX Local Collection |
subjects | Aluminum nitride Approximation Carrier mobility Density distribution Electron density Gallium nitrides Heterostructures High electron mobility transistors Interface roughness Mathematical analysis Modulation doping Numerical analysis Phonons Potential energy S matrix theory Schrodinger equation Semiconductor devices Thickness |
title | Modeling interface roughness scattering with incorporation of potential energy and wave-function fluctuations: Enhancing mobility in AlN/GaN digital alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20interface%20roughness%20scattering%20with%20incorporation%20of%20potential%20energy%20and%20wave-function%20fluctuations:%20Enhancing%20mobility%20in%20AlN/GaN%20digital%20alloys&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Hong,%20Gongyi&rft.date=2024-12-28&rft.volume=136&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0229570&rft_dat=%3Cproquest_cross%3E3149596063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149596063&rft_id=info:pmid/&rfr_iscdi=true |