Large magnetoresistance and high spin-transfer torque efficiency of Co2Mn x Fe1− x Ge (0 ≤ x ≤ 1) Heusler alloy thin films obtained by high-throughput compositional optimization using combinatorially sputtered composition-gradient film

Half-metallic ferromagnetic Heusler alloys having high spin polarization are promising candidates to realize large magnetoresistance (MR) ratio and high spin-transfer torque (STT) efficiency in next-generation spintronic devices. Since the Heusler alloy properties are sensitive to composition, optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APL materials 2024-11, Vol.12 (11)
Hauptverfasser: Barwal, Vineet, Suto, Hirofumi, Toyama, Ryo, Simalaotao, Kodchakorn, Sasaki, Taisuke, Miura, Yoshio, Sakuraba, Yuya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title APL materials
container_volume 12
creator Barwal, Vineet
Suto, Hirofumi
Toyama, Ryo
Simalaotao, Kodchakorn
Sasaki, Taisuke
Miura, Yoshio
Sakuraba, Yuya
description Half-metallic ferromagnetic Heusler alloys having high spin polarization are promising candidates to realize large magnetoresistance (MR) ratio and high spin-transfer torque (STT) efficiency in next-generation spintronic devices. Since the Heusler alloy properties are sensitive to composition, optimizing the composition is crucial for enhancing device performance. Here, we report the fabrication of high-performance current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices using Co2MnxFe1−xGe (0 ≤ x ≤ 1) Heusler alloy, employing a high-throughput and detailed composition optimization method. The method combined composition-gradient films and local measurements to enable the composition variation from Co2FeGe to Co2MnGe to be efficiently studied on a single library sample with a small composition interval. The CPP-GMR devices fabricated from stacks annealed at 250 °C showed a clear composition dependence of MR with the maximum of MR ratio ∼38% in the Mn-rich region of x = 0.85. By increasing the annealing temperature to 350 °C, the MR ratio increased to ∼45% along with high STT efficiency ∼0.6 in the broad composition range of 0.2 ≤ x ≤ 0.7. The optimal composition for the highest MR changed with annealing temperature because of the stability of the GMR stack being higher in the lower x range. The record high MR for the all-metal CPP-GMR devices, at low annealing temperature of 250 °C was achieved by the detailed composition optimization. These results present the high potential of Co2MnxFe1−xGe and provide a comprehensive guidance on the composition optimization for achieving large MR ratio and high STT efficiency in the CPP-GMR devices.
doi_str_mv 10.1063/5.0226638
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0226638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_5_0226638</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1063_5_02266383</originalsourceid><addsrcrecordid>eNqVUDFOw0AQPCGQiCAFP9iSFIY7W7FCHRFSQEdBZ22cPXuRfWfuzhLmBdDyBl6WH_ADzlGKtDS7s9LszGiEuFLyRsk8u53fyDTN82xxIiapyvNknqUvp0f4XEy9f5VSKplli7t8In4f0VUELVaGgnXk2Qc0JQGaLdRc1eA7NklwaLwmB5Hz1hOQ1lwymXIAq2Fp0ycD77Aitfv8juCB4FrC7usn4nGqGayp900UwKaxA4SaDWhuWg92E5ANbWEz7A2TUDvbV3XXByht21nPga3BBmwXuOUPHE_oPZtqJGzYYEzFUXiIYfsQyEW1o9ekcriNYcPe8VKcaWw8TQ_7QsxW98_LdVI6670jXXSOW3RDoWQx1lrMi0Ot2X-4f1xrhdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large magnetoresistance and high spin-transfer torque efficiency of Co2Mn x Fe1− x Ge (0 ≤ x ≤ 1) Heusler alloy thin films obtained by high-throughput compositional optimization using combinatorially sputtered composition-gradient film</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Barwal, Vineet ; Suto, Hirofumi ; Toyama, Ryo ; Simalaotao, Kodchakorn ; Sasaki, Taisuke ; Miura, Yoshio ; Sakuraba, Yuya</creator><creatorcontrib>Barwal, Vineet ; Suto, Hirofumi ; Toyama, Ryo ; Simalaotao, Kodchakorn ; Sasaki, Taisuke ; Miura, Yoshio ; Sakuraba, Yuya</creatorcontrib><description>Half-metallic ferromagnetic Heusler alloys having high spin polarization are promising candidates to realize large magnetoresistance (MR) ratio and high spin-transfer torque (STT) efficiency in next-generation spintronic devices. Since the Heusler alloy properties are sensitive to composition, optimizing the composition is crucial for enhancing device performance. Here, we report the fabrication of high-performance current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices using Co2MnxFe1−xGe (0 ≤ x ≤ 1) Heusler alloy, employing a high-throughput and detailed composition optimization method. The method combined composition-gradient films and local measurements to enable the composition variation from Co2FeGe to Co2MnGe to be efficiently studied on a single library sample with a small composition interval. The CPP-GMR devices fabricated from stacks annealed at 250 °C showed a clear composition dependence of MR with the maximum of MR ratio ∼38% in the Mn-rich region of x = 0.85. By increasing the annealing temperature to 350 °C, the MR ratio increased to ∼45% along with high STT efficiency ∼0.6 in the broad composition range of 0.2 ≤ x ≤ 0.7. The optimal composition for the highest MR changed with annealing temperature because of the stability of the GMR stack being higher in the lower x range. The record high MR for the all-metal CPP-GMR devices, at low annealing temperature of 250 °C was achieved by the detailed composition optimization. These results present the high potential of Co2MnxFe1−xGe and provide a comprehensive guidance on the composition optimization for achieving large MR ratio and high STT efficiency in the CPP-GMR devices.</description><identifier>ISSN: 2166-532X</identifier><identifier>EISSN: 2166-532X</identifier><identifier>DOI: 10.1063/5.0226638</identifier><language>eng</language><ispartof>APL materials, 2024-11, Vol.12 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1063_5_02266383</cites><orcidid>0000-0002-6098-4422 ; 0000-0003-4618-9550 ; 0000-0002-7398-5803 ; 0000-0003-4387-5862 ; 0000-0002-5952-7638 ; 0000-0002-5605-5452 ; 0000-0001-9445-5900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Barwal, Vineet</creatorcontrib><creatorcontrib>Suto, Hirofumi</creatorcontrib><creatorcontrib>Toyama, Ryo</creatorcontrib><creatorcontrib>Simalaotao, Kodchakorn</creatorcontrib><creatorcontrib>Sasaki, Taisuke</creatorcontrib><creatorcontrib>Miura, Yoshio</creatorcontrib><creatorcontrib>Sakuraba, Yuya</creatorcontrib><title>Large magnetoresistance and high spin-transfer torque efficiency of Co2Mn x Fe1− x Ge (0 ≤ x ≤ 1) Heusler alloy thin films obtained by high-throughput compositional optimization using combinatorially sputtered composition-gradient film</title><title>APL materials</title><description>Half-metallic ferromagnetic Heusler alloys having high spin polarization are promising candidates to realize large magnetoresistance (MR) ratio and high spin-transfer torque (STT) efficiency in next-generation spintronic devices. Since the Heusler alloy properties are sensitive to composition, optimizing the composition is crucial for enhancing device performance. Here, we report the fabrication of high-performance current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices using Co2MnxFe1−xGe (0 ≤ x ≤ 1) Heusler alloy, employing a high-throughput and detailed composition optimization method. The method combined composition-gradient films and local measurements to enable the composition variation from Co2FeGe to Co2MnGe to be efficiently studied on a single library sample with a small composition interval. The CPP-GMR devices fabricated from stacks annealed at 250 °C showed a clear composition dependence of MR with the maximum of MR ratio ∼38% in the Mn-rich region of x = 0.85. By increasing the annealing temperature to 350 °C, the MR ratio increased to ∼45% along with high STT efficiency ∼0.6 in the broad composition range of 0.2 ≤ x ≤ 0.7. The optimal composition for the highest MR changed with annealing temperature because of the stability of the GMR stack being higher in the lower x range. The record high MR for the all-metal CPP-GMR devices, at low annealing temperature of 250 °C was achieved by the detailed composition optimization. These results present the high potential of Co2MnxFe1−xGe and provide a comprehensive guidance on the composition optimization for achieving large MR ratio and high STT efficiency in the CPP-GMR devices.</description><issn>2166-532X</issn><issn>2166-532X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVUDFOw0AQPCGQiCAFP9iSFIY7W7FCHRFSQEdBZ22cPXuRfWfuzhLmBdDyBl6WH_ADzlGKtDS7s9LszGiEuFLyRsk8u53fyDTN82xxIiapyvNknqUvp0f4XEy9f5VSKplli7t8In4f0VUELVaGgnXk2Qc0JQGaLdRc1eA7NklwaLwmB5Hz1hOQ1lwymXIAq2Fp0ycD77Aitfv8juCB4FrC7usn4nGqGayp900UwKaxA4SaDWhuWg92E5ANbWEz7A2TUDvbV3XXByht21nPga3BBmwXuOUPHE_oPZtqJGzYYEzFUXiIYfsQyEW1o9ekcriNYcPe8VKcaWw8TQ_7QsxW98_LdVI6670jXXSOW3RDoWQx1lrMi0Ot2X-4f1xrhdg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Barwal, Vineet</creator><creator>Suto, Hirofumi</creator><creator>Toyama, Ryo</creator><creator>Simalaotao, Kodchakorn</creator><creator>Sasaki, Taisuke</creator><creator>Miura, Yoshio</creator><creator>Sakuraba, Yuya</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6098-4422</orcidid><orcidid>https://orcid.org/0000-0003-4618-9550</orcidid><orcidid>https://orcid.org/0000-0002-7398-5803</orcidid><orcidid>https://orcid.org/0000-0003-4387-5862</orcidid><orcidid>https://orcid.org/0000-0002-5952-7638</orcidid><orcidid>https://orcid.org/0000-0002-5605-5452</orcidid><orcidid>https://orcid.org/0000-0001-9445-5900</orcidid></search><sort><creationdate>20241101</creationdate><title>Large magnetoresistance and high spin-transfer torque efficiency of Co2Mn x Fe1− x Ge (0 ≤ x ≤ 1) Heusler alloy thin films obtained by high-throughput compositional optimization using combinatorially sputtered composition-gradient film</title><author>Barwal, Vineet ; Suto, Hirofumi ; Toyama, Ryo ; Simalaotao, Kodchakorn ; Sasaki, Taisuke ; Miura, Yoshio ; Sakuraba, Yuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1063_5_02266383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barwal, Vineet</creatorcontrib><creatorcontrib>Suto, Hirofumi</creatorcontrib><creatorcontrib>Toyama, Ryo</creatorcontrib><creatorcontrib>Simalaotao, Kodchakorn</creatorcontrib><creatorcontrib>Sasaki, Taisuke</creatorcontrib><creatorcontrib>Miura, Yoshio</creatorcontrib><creatorcontrib>Sakuraba, Yuya</creatorcontrib><collection>CrossRef</collection><jtitle>APL materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barwal, Vineet</au><au>Suto, Hirofumi</au><au>Toyama, Ryo</au><au>Simalaotao, Kodchakorn</au><au>Sasaki, Taisuke</au><au>Miura, Yoshio</au><au>Sakuraba, Yuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large magnetoresistance and high spin-transfer torque efficiency of Co2Mn x Fe1− x Ge (0 ≤ x ≤ 1) Heusler alloy thin films obtained by high-throughput compositional optimization using combinatorially sputtered composition-gradient film</atitle><jtitle>APL materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>12</volume><issue>11</issue><issn>2166-532X</issn><eissn>2166-532X</eissn><abstract>Half-metallic ferromagnetic Heusler alloys having high spin polarization are promising candidates to realize large magnetoresistance (MR) ratio and high spin-transfer torque (STT) efficiency in next-generation spintronic devices. Since the Heusler alloy properties are sensitive to composition, optimizing the composition is crucial for enhancing device performance. Here, we report the fabrication of high-performance current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices using Co2MnxFe1−xGe (0 ≤ x ≤ 1) Heusler alloy, employing a high-throughput and detailed composition optimization method. The method combined composition-gradient films and local measurements to enable the composition variation from Co2FeGe to Co2MnGe to be efficiently studied on a single library sample with a small composition interval. The CPP-GMR devices fabricated from stacks annealed at 250 °C showed a clear composition dependence of MR with the maximum of MR ratio ∼38% in the Mn-rich region of x = 0.85. By increasing the annealing temperature to 350 °C, the MR ratio increased to ∼45% along with high STT efficiency ∼0.6 in the broad composition range of 0.2 ≤ x ≤ 0.7. The optimal composition for the highest MR changed with annealing temperature because of the stability of the GMR stack being higher in the lower x range. The record high MR for the all-metal CPP-GMR devices, at low annealing temperature of 250 °C was achieved by the detailed composition optimization. These results present the high potential of Co2MnxFe1−xGe and provide a comprehensive guidance on the composition optimization for achieving large MR ratio and high STT efficiency in the CPP-GMR devices.</abstract><doi>10.1063/5.0226638</doi><orcidid>https://orcid.org/0000-0002-6098-4422</orcidid><orcidid>https://orcid.org/0000-0003-4618-9550</orcidid><orcidid>https://orcid.org/0000-0002-7398-5803</orcidid><orcidid>https://orcid.org/0000-0003-4387-5862</orcidid><orcidid>https://orcid.org/0000-0002-5952-7638</orcidid><orcidid>https://orcid.org/0000-0002-5605-5452</orcidid><orcidid>https://orcid.org/0000-0001-9445-5900</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2166-532X
ispartof APL materials, 2024-11, Vol.12 (11)
issn 2166-532X
2166-532X
language eng
recordid cdi_crossref_primary_10_1063_5_0226638
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Large magnetoresistance and high spin-transfer torque efficiency of Co2Mn x Fe1− x Ge (0 ≤ x ≤ 1) Heusler alloy thin films obtained by high-throughput compositional optimization using combinatorially sputtered composition-gradient film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20magnetoresistance%20and%20high%20spin-transfer%20torque%20efficiency%20of%20Co2Mn%20x%20Fe1%E2%88%92%20x%20Ge%20(0%20%E2%89%A4%20x%20%E2%89%A4%201)%20Heusler%20alloy%20thin%20films%20obtained%20by%20high-throughput%20compositional%20optimization%20using%20combinatorially%20sputtered%20composition-gradient%20film&rft.jtitle=APL%20materials&rft.au=Barwal,%20Vineet&rft.date=2024-11-01&rft.volume=12&rft.issue=11&rft.issn=2166-532X&rft.eissn=2166-532X&rft_id=info:doi/10.1063/5.0226638&rft_dat=%3Ccrossref%3E10_1063_5_0226638%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true