Effect of weak intermolecular interactions on the ionization of benzene derivatives dimers

The interactions between π-systems in dimers of aromatic molecules lead to particularly stable conformations within the relative orientations of the monomers. Extensive research has been conducted on the properties of these complexes in the neutral state. However, in recent decades, there has been a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-10, Vol.161 (16)
Hauptverfasser: Lucia-Tamudo, Jesús, López-Sánchez, Rubén, Nogueira, Juan J., Díaz-Tendero, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interactions between π-systems in dimers of aromatic molecules lead to particularly stable conformations within the relative orientations of the monomers. Extensive research has been conducted on the properties of these complexes in the neutral state. However, in recent decades, there has been a significant surge in applications harnessing these structures for electrical purposes. Therefore, this study places particular emphasis on a deeper understanding of the redox properties of these compounds and how to modify them. To achieve this, we have focused on modeling the effect of a wide range of functional groups on the redox properties of benzene derivatives, observing a correlation between these properties and the change in the molecular dipole moment. Then, we investigated the effect of π-stacking interactions on these properties in dimers formed by either identical or different monomers. In both cases, there is an enhancement of the reducing character of the systems due to these interactions. Upon oxidation, the charge is distributed proportionally to the redox potential of each monomer. Therefore, if there is heterogeneity in these potentials, the properties of the complete cationic system will be influenced by the monomer with a greater tendency to undergo oxidation. The considered models serve as an excellent example for studying the behavior of nucleobases in DNA or aromatic amino acids, among others.
ISSN:0021-9606
1089-7690
1089-7690
DOI:10.1063/5.0226339