Electrodeposition of graphene oxide on titanium foil. Application field: Rechargeable batteries
The method of electrodepositing graphene oxide on titanium utilizes a thin grade 1 titanium foil with a thickness of 0.2 mm, a width of 10 mm, and a rectangular graphite plate with a parallelepiped shape with a thickness of 15 mm, a width of 40 mm, and a length of 100 mm. The titanium foil has a cut...
Gespeichert in:
Veröffentlicht in: | AIP advances 2024-10, Vol.14 (10), p.105037-105037-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105037-10 |
---|---|
container_issue | 10 |
container_start_page | 105037 |
container_title | AIP advances |
container_volume | 14 |
creator | Pastore, Adolfo |
description | The method of electrodepositing graphene oxide on titanium utilizes a thin grade 1 titanium foil with a thickness of 0.2 mm, a width of 10 mm, and a rectangular graphite plate with a parallelepiped shape with a thickness of 15 mm, a width of 40 mm, and a length of 100 mm. The titanium foil has a cut on one side, forming an isosceles triangle with a slightly inclined tip, creating an angle where the distance between the tip and the vertical symmetry axis of the foil is 3 mm. The titanium foil is positioned parallel to the graphite plate, with the tip as the only electrical contact. The two electrodes, titanium and graphite, assembled in this way, are immersed in an electrolytic solution composed of water and sulfuric acid. When a direct current voltage is applied between the two electrodes, a strong electric field is generated at the contact point, resulting in high temperature and the production of ultraviolet rays. Following a treatment described later in the so-called “preparation protocol,” reduced graphene oxide (rGO) is produced in suspension in the solution at the contact point between the tip of the titanium foil and the graphite plate, which, due to the electric field, tends to deposit on the titanium surface. A possible application found experimentally refers to rechargeable batteries. |
doi_str_mv | 10.1063/5.0225845 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0225845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3cc0a9473ea548829d9563e456734dc1</doaj_id><sourcerecordid>3123905043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-bb542dbe494a49f59a6baf81d1968c974883316f56cd6c03efa8916254c80be03</originalsourceid><addsrcrecordid>eNp9kU1LBDEMhgdRUNSD_2DAk8Ku_d7Wm4hfIAii55Jp07XLOB3bLui_d3RFPJlDEsLDm_CmaY4omVOi-JmcE8akFnKr2WNU6hlnTG3_6Xebw1JWZAphKNFir7FXPbqak8cxlVhjGtoU2mWG8QUHbNN79FMe2horDHH92oYU-3l7MY59dPDNh4i9P28f0b1AXiJ0PbYd1Io5YjlodgL0BQ9_6n7zfH31dHk7u3-4ubu8uJ85pnmddZ0UzHcojABhgjSgOgiaemqUdmYhtOacqiCV88oRjgG0oYpJ4TTpkPD95m6j6xOs7JjjK-QPmyDa70HKSwu5Rtej5c4RMGLBEeSky4w3UnEUUi248I5OWscbrTGntzWWaldpnYfpfMsp44ZIIvhEnWwol1MpGcPvVkrs1zustD_vmNjTDVvc5OOXa__AnxC7iKU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123905043</pqid></control><display><type>article</type><title>Electrodeposition of graphene oxide on titanium foil. Application field: Rechargeable batteries</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Pastore, Adolfo</creator><creatorcontrib>Pastore, Adolfo</creatorcontrib><description>The method of electrodepositing graphene oxide on titanium utilizes a thin grade 1 titanium foil with a thickness of 0.2 mm, a width of 10 mm, and a rectangular graphite plate with a parallelepiped shape with a thickness of 15 mm, a width of 40 mm, and a length of 100 mm. The titanium foil has a cut on one side, forming an isosceles triangle with a slightly inclined tip, creating an angle where the distance between the tip and the vertical symmetry axis of the foil is 3 mm. The titanium foil is positioned parallel to the graphite plate, with the tip as the only electrical contact. The two electrodes, titanium and graphite, assembled in this way, are immersed in an electrolytic solution composed of water and sulfuric acid. When a direct current voltage is applied between the two electrodes, a strong electric field is generated at the contact point, resulting in high temperature and the production of ultraviolet rays. Following a treatment described later in the so-called “preparation protocol,” reduced graphene oxide (rGO) is produced in suspension in the solution at the contact point between the tip of the titanium foil and the graphite plate, which, due to the electric field, tends to deposit on the titanium surface. A possible application found experimentally refers to rechargeable batteries.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0225845</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Batteries ; Contact angle ; Direct current ; Electric contacts ; Electric fields ; Electrodes ; Graphene ; Graphite ; High temperature ; Metal foils ; Parallelepipeds ; Rechargeable batteries ; Sulfuric acid ; Thickness ; Titanium ; Triangles ; Ultraviolet radiation ; Vertical orientation</subject><ispartof>AIP advances, 2024-10, Vol.14 (10), p.105037-105037-10</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-bb542dbe494a49f59a6baf81d1968c974883316f56cd6c03efa8916254c80be03</cites><orcidid>0009-0003-0087-2810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Pastore, Adolfo</creatorcontrib><title>Electrodeposition of graphene oxide on titanium foil. Application field: Rechargeable batteries</title><title>AIP advances</title><description>The method of electrodepositing graphene oxide on titanium utilizes a thin grade 1 titanium foil with a thickness of 0.2 mm, a width of 10 mm, and a rectangular graphite plate with a parallelepiped shape with a thickness of 15 mm, a width of 40 mm, and a length of 100 mm. The titanium foil has a cut on one side, forming an isosceles triangle with a slightly inclined tip, creating an angle where the distance between the tip and the vertical symmetry axis of the foil is 3 mm. The titanium foil is positioned parallel to the graphite plate, with the tip as the only electrical contact. The two electrodes, titanium and graphite, assembled in this way, are immersed in an electrolytic solution composed of water and sulfuric acid. When a direct current voltage is applied between the two electrodes, a strong electric field is generated at the contact point, resulting in high temperature and the production of ultraviolet rays. Following a treatment described later in the so-called “preparation protocol,” reduced graphene oxide (rGO) is produced in suspension in the solution at the contact point between the tip of the titanium foil and the graphite plate, which, due to the electric field, tends to deposit on the titanium surface. A possible application found experimentally refers to rechargeable batteries.</description><subject>Batteries</subject><subject>Contact angle</subject><subject>Direct current</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Graphene</subject><subject>Graphite</subject><subject>High temperature</subject><subject>Metal foils</subject><subject>Parallelepipeds</subject><subject>Rechargeable batteries</subject><subject>Sulfuric acid</subject><subject>Thickness</subject><subject>Titanium</subject><subject>Triangles</subject><subject>Ultraviolet radiation</subject><subject>Vertical orientation</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1LBDEMhgdRUNSD_2DAk8Ku_d7Wm4hfIAii55Jp07XLOB3bLui_d3RFPJlDEsLDm_CmaY4omVOi-JmcE8akFnKr2WNU6hlnTG3_6Xebw1JWZAphKNFir7FXPbqak8cxlVhjGtoU2mWG8QUHbNN79FMe2horDHH92oYU-3l7MY59dPDNh4i9P28f0b1AXiJ0PbYd1Io5YjlodgL0BQ9_6n7zfH31dHk7u3-4ubu8uJ85pnmddZ0UzHcojABhgjSgOgiaemqUdmYhtOacqiCV88oRjgG0oYpJ4TTpkPD95m6j6xOs7JjjK-QPmyDa70HKSwu5Rtej5c4RMGLBEeSky4w3UnEUUi248I5OWscbrTGntzWWaldpnYfpfMsp44ZIIvhEnWwol1MpGcPvVkrs1zustD_vmNjTDVvc5OOXa__AnxC7iKU</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Pastore, Adolfo</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-0087-2810</orcidid></search><sort><creationdate>20241001</creationdate><title>Electrodeposition of graphene oxide on titanium foil. Application field: Rechargeable batteries</title><author>Pastore, Adolfo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-bb542dbe494a49f59a6baf81d1968c974883316f56cd6c03efa8916254c80be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Contact angle</topic><topic>Direct current</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Graphene</topic><topic>Graphite</topic><topic>High temperature</topic><topic>Metal foils</topic><topic>Parallelepipeds</topic><topic>Rechargeable batteries</topic><topic>Sulfuric acid</topic><topic>Thickness</topic><topic>Titanium</topic><topic>Triangles</topic><topic>Ultraviolet radiation</topic><topic>Vertical orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pastore, Adolfo</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pastore, Adolfo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrodeposition of graphene oxide on titanium foil. Application field: Rechargeable batteries</atitle><jtitle>AIP advances</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>10</issue><spage>105037</spage><epage>105037-10</epage><pages>105037-105037-10</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>The method of electrodepositing graphene oxide on titanium utilizes a thin grade 1 titanium foil with a thickness of 0.2 mm, a width of 10 mm, and a rectangular graphite plate with a parallelepiped shape with a thickness of 15 mm, a width of 40 mm, and a length of 100 mm. The titanium foil has a cut on one side, forming an isosceles triangle with a slightly inclined tip, creating an angle where the distance between the tip and the vertical symmetry axis of the foil is 3 mm. The titanium foil is positioned parallel to the graphite plate, with the tip as the only electrical contact. The two electrodes, titanium and graphite, assembled in this way, are immersed in an electrolytic solution composed of water and sulfuric acid. When a direct current voltage is applied between the two electrodes, a strong electric field is generated at the contact point, resulting in high temperature and the production of ultraviolet rays. Following a treatment described later in the so-called “preparation protocol,” reduced graphene oxide (rGO) is produced in suspension in the solution at the contact point between the tip of the titanium foil and the graphite plate, which, due to the electric field, tends to deposit on the titanium surface. A possible application found experimentally refers to rechargeable batteries.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0225845</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0003-0087-2810</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2024-10, Vol.14 (10), p.105037-105037-10 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0225845 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Batteries Contact angle Direct current Electric contacts Electric fields Electrodes Graphene Graphite High temperature Metal foils Parallelepipeds Rechargeable batteries Sulfuric acid Thickness Titanium Triangles Ultraviolet radiation Vertical orientation |
title | Electrodeposition of graphene oxide on titanium foil. Application field: Rechargeable batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrodeposition%20of%20graphene%20oxide%20on%20titanium%20foil.%20Application%20field:%20Rechargeable%20batteries&rft.jtitle=AIP%20advances&rft.au=Pastore,%20Adolfo&rft.date=2024-10-01&rft.volume=14&rft.issue=10&rft.spage=105037&rft.epage=105037-10&rft.pages=105037-105037-10&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0225845&rft_dat=%3Cproquest_cross%3E3123905043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123905043&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_3cc0a9473ea548829d9563e456734dc1&rfr_iscdi=true |