Electrodeposition of graphene oxide on titanium foil. Application field: Rechargeable batteries

The method of electrodepositing graphene oxide on titanium utilizes a thin grade 1 titanium foil with a thickness of 0.2 mm, a width of 10 mm, and a rectangular graphite plate with a parallelepiped shape with a thickness of 15 mm, a width of 40 mm, and a length of 100 mm. The titanium foil has a cut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-10, Vol.14 (10), p.105037-105037-10
1. Verfasser: Pastore, Adolfo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105037-10
container_issue 10
container_start_page 105037
container_title AIP advances
container_volume 14
creator Pastore, Adolfo
description The method of electrodepositing graphene oxide on titanium utilizes a thin grade 1 titanium foil with a thickness of 0.2 mm, a width of 10 mm, and a rectangular graphite plate with a parallelepiped shape with a thickness of 15 mm, a width of 40 mm, and a length of 100 mm. The titanium foil has a cut on one side, forming an isosceles triangle with a slightly inclined tip, creating an angle where the distance between the tip and the vertical symmetry axis of the foil is 3 mm. The titanium foil is positioned parallel to the graphite plate, with the tip as the only electrical contact. The two electrodes, titanium and graphite, assembled in this way, are immersed in an electrolytic solution composed of water and sulfuric acid. When a direct current voltage is applied between the two electrodes, a strong electric field is generated at the contact point, resulting in high temperature and the production of ultraviolet rays. Following a treatment described later in the so-called “preparation protocol,” reduced graphene oxide (rGO) is produced in suspension in the solution at the contact point between the tip of the titanium foil and the graphite plate, which, due to the electric field, tends to deposit on the titanium surface. A possible application found experimentally refers to rechargeable batteries.
doi_str_mv 10.1063/5.0225845
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0225845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3cc0a9473ea548829d9563e456734dc1</doaj_id><sourcerecordid>3123905043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-bb542dbe494a49f59a6baf81d1968c974883316f56cd6c03efa8916254c80be03</originalsourceid><addsrcrecordid>eNp9kU1LBDEMhgdRUNSD_2DAk8Ku_d7Wm4hfIAii55Jp07XLOB3bLui_d3RFPJlDEsLDm_CmaY4omVOi-JmcE8akFnKr2WNU6hlnTG3_6Xebw1JWZAphKNFir7FXPbqak8cxlVhjGtoU2mWG8QUHbNN79FMe2horDHH92oYU-3l7MY59dPDNh4i9P28f0b1AXiJ0PbYd1Io5YjlodgL0BQ9_6n7zfH31dHk7u3-4ubu8uJ85pnmddZ0UzHcojABhgjSgOgiaemqUdmYhtOacqiCV88oRjgG0oYpJ4TTpkPD95m6j6xOs7JjjK-QPmyDa70HKSwu5Rtej5c4RMGLBEeSky4w3UnEUUi248I5OWscbrTGntzWWaldpnYfpfMsp44ZIIvhEnWwol1MpGcPvVkrs1zustD_vmNjTDVvc5OOXa__AnxC7iKU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123905043</pqid></control><display><type>article</type><title>Electrodeposition of graphene oxide on titanium foil. Application field: Rechargeable batteries</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Pastore, Adolfo</creator><creatorcontrib>Pastore, Adolfo</creatorcontrib><description>The method of electrodepositing graphene oxide on titanium utilizes a thin grade 1 titanium foil with a thickness of 0.2 mm, a width of 10 mm, and a rectangular graphite plate with a parallelepiped shape with a thickness of 15 mm, a width of 40 mm, and a length of 100 mm. The titanium foil has a cut on one side, forming an isosceles triangle with a slightly inclined tip, creating an angle where the distance between the tip and the vertical symmetry axis of the foil is 3 mm. The titanium foil is positioned parallel to the graphite plate, with the tip as the only electrical contact. The two electrodes, titanium and graphite, assembled in this way, are immersed in an electrolytic solution composed of water and sulfuric acid. When a direct current voltage is applied between the two electrodes, a strong electric field is generated at the contact point, resulting in high temperature and the production of ultraviolet rays. Following a treatment described later in the so-called “preparation protocol,” reduced graphene oxide (rGO) is produced in suspension in the solution at the contact point between the tip of the titanium foil and the graphite plate, which, due to the electric field, tends to deposit on the titanium surface. A possible application found experimentally refers to rechargeable batteries.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0225845</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Batteries ; Contact angle ; Direct current ; Electric contacts ; Electric fields ; Electrodes ; Graphene ; Graphite ; High temperature ; Metal foils ; Parallelepipeds ; Rechargeable batteries ; Sulfuric acid ; Thickness ; Titanium ; Triangles ; Ultraviolet radiation ; Vertical orientation</subject><ispartof>AIP advances, 2024-10, Vol.14 (10), p.105037-105037-10</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-bb542dbe494a49f59a6baf81d1968c974883316f56cd6c03efa8916254c80be03</cites><orcidid>0009-0003-0087-2810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Pastore, Adolfo</creatorcontrib><title>Electrodeposition of graphene oxide on titanium foil. Application field: Rechargeable batteries</title><title>AIP advances</title><description>The method of electrodepositing graphene oxide on titanium utilizes a thin grade 1 titanium foil with a thickness of 0.2 mm, a width of 10 mm, and a rectangular graphite plate with a parallelepiped shape with a thickness of 15 mm, a width of 40 mm, and a length of 100 mm. The titanium foil has a cut on one side, forming an isosceles triangle with a slightly inclined tip, creating an angle where the distance between the tip and the vertical symmetry axis of the foil is 3 mm. The titanium foil is positioned parallel to the graphite plate, with the tip as the only electrical contact. The two electrodes, titanium and graphite, assembled in this way, are immersed in an electrolytic solution composed of water and sulfuric acid. When a direct current voltage is applied between the two electrodes, a strong electric field is generated at the contact point, resulting in high temperature and the production of ultraviolet rays. Following a treatment described later in the so-called “preparation protocol,” reduced graphene oxide (rGO) is produced in suspension in the solution at the contact point between the tip of the titanium foil and the graphite plate, which, due to the electric field, tends to deposit on the titanium surface. A possible application found experimentally refers to rechargeable batteries.</description><subject>Batteries</subject><subject>Contact angle</subject><subject>Direct current</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Graphene</subject><subject>Graphite</subject><subject>High temperature</subject><subject>Metal foils</subject><subject>Parallelepipeds</subject><subject>Rechargeable batteries</subject><subject>Sulfuric acid</subject><subject>Thickness</subject><subject>Titanium</subject><subject>Triangles</subject><subject>Ultraviolet radiation</subject><subject>Vertical orientation</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1LBDEMhgdRUNSD_2DAk8Ku_d7Wm4hfIAii55Jp07XLOB3bLui_d3RFPJlDEsLDm_CmaY4omVOi-JmcE8akFnKr2WNU6hlnTG3_6Xebw1JWZAphKNFir7FXPbqak8cxlVhjGtoU2mWG8QUHbNN79FMe2horDHH92oYU-3l7MY59dPDNh4i9P28f0b1AXiJ0PbYd1Io5YjlodgL0BQ9_6n7zfH31dHk7u3-4ubu8uJ85pnmddZ0UzHcojABhgjSgOgiaemqUdmYhtOacqiCV88oRjgG0oYpJ4TTpkPD95m6j6xOs7JjjK-QPmyDa70HKSwu5Rtej5c4RMGLBEeSky4w3UnEUUi248I5OWscbrTGntzWWaldpnYfpfMsp44ZIIvhEnWwol1MpGcPvVkrs1zustD_vmNjTDVvc5OOXa__AnxC7iKU</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Pastore, Adolfo</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-0087-2810</orcidid></search><sort><creationdate>20241001</creationdate><title>Electrodeposition of graphene oxide on titanium foil. Application field: Rechargeable batteries</title><author>Pastore, Adolfo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-bb542dbe494a49f59a6baf81d1968c974883316f56cd6c03efa8916254c80be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Contact angle</topic><topic>Direct current</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Graphene</topic><topic>Graphite</topic><topic>High temperature</topic><topic>Metal foils</topic><topic>Parallelepipeds</topic><topic>Rechargeable batteries</topic><topic>Sulfuric acid</topic><topic>Thickness</topic><topic>Titanium</topic><topic>Triangles</topic><topic>Ultraviolet radiation</topic><topic>Vertical orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pastore, Adolfo</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pastore, Adolfo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrodeposition of graphene oxide on titanium foil. Application field: Rechargeable batteries</atitle><jtitle>AIP advances</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>10</issue><spage>105037</spage><epage>105037-10</epage><pages>105037-105037-10</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>The method of electrodepositing graphene oxide on titanium utilizes a thin grade 1 titanium foil with a thickness of 0.2 mm, a width of 10 mm, and a rectangular graphite plate with a parallelepiped shape with a thickness of 15 mm, a width of 40 mm, and a length of 100 mm. The titanium foil has a cut on one side, forming an isosceles triangle with a slightly inclined tip, creating an angle where the distance between the tip and the vertical symmetry axis of the foil is 3 mm. The titanium foil is positioned parallel to the graphite plate, with the tip as the only electrical contact. The two electrodes, titanium and graphite, assembled in this way, are immersed in an electrolytic solution composed of water and sulfuric acid. When a direct current voltage is applied between the two electrodes, a strong electric field is generated at the contact point, resulting in high temperature and the production of ultraviolet rays. Following a treatment described later in the so-called “preparation protocol,” reduced graphene oxide (rGO) is produced in suspension in the solution at the contact point between the tip of the titanium foil and the graphite plate, which, due to the electric field, tends to deposit on the titanium surface. A possible application found experimentally refers to rechargeable batteries.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0225845</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0003-0087-2810</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2024-10, Vol.14 (10), p.105037-105037-10
issn 2158-3226
2158-3226
language eng
recordid cdi_crossref_primary_10_1063_5_0225845
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Batteries
Contact angle
Direct current
Electric contacts
Electric fields
Electrodes
Graphene
Graphite
High temperature
Metal foils
Parallelepipeds
Rechargeable batteries
Sulfuric acid
Thickness
Titanium
Triangles
Ultraviolet radiation
Vertical orientation
title Electrodeposition of graphene oxide on titanium foil. Application field: Rechargeable batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrodeposition%20of%20graphene%20oxide%20on%20titanium%20foil.%20Application%20field:%20Rechargeable%20batteries&rft.jtitle=AIP%20advances&rft.au=Pastore,%20Adolfo&rft.date=2024-10-01&rft.volume=14&rft.issue=10&rft.spage=105037&rft.epage=105037-10&rft.pages=105037-105037-10&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0225845&rft_dat=%3Cproquest_cross%3E3123905043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123905043&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_3cc0a9473ea548829d9563e456734dc1&rfr_iscdi=true