Numerical investigation of plasma properties in Ar/SiH4 inductively coupled plasmas considering electron energy distribution functions

In thin film deposition, Ar/SiH4 mixtures are widely used to make polysilicon (poly-Si) and hydrogenated amorphous silicon (a-SiH) layers. Despite extensive research conducted on this mixture, little research has focused on the variations in plasma properties, radicals, and ions that occur during pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2024-09, Vol.136 (9)
Hauptverfasser: Kim, Ji-Hoon, Yoon, Min-Young, Kim, Gwan, Kwon, Deuk-Chul, Lee, Hyo-Chang, Kim, Jung-Hyung, Choe, Hee-Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Journal of applied physics
container_volume 136
creator Kim, Ji-Hoon
Yoon, Min-Young
Kim, Gwan
Kwon, Deuk-Chul
Lee, Hyo-Chang
Kim, Jung-Hyung
Choe, Hee-Hwan
description In thin film deposition, Ar/SiH4 mixtures are widely used to make polysilicon (poly-Si) and hydrogenated amorphous silicon (a-SiH) layers. Despite extensive research conducted on this mixture, little research has focused on the variations in plasma properties, radicals, and ions that occur during plasma discharge in inductively coupled plasma (ICP) equipment compared to capacitive coupled plasma equipment. In this paper, we investigate the properties of the plasma generated through mathematical modeling of Ar/SiH4 inductive coupled plasma discharge by using the electron energy distribution function (EEDF) obtained by solving the Boltzmann equation. We closely examine the variation in plasma properties and the correlation of plasma variables by controlling the radio frequency power and gas pressure during the process conditions. The Boltzmann equation was computed by assuming the two-term approximation, resulting in a Druyvesteyn-like EEDF due to the high-pressure conditions. To validate the simulation model, the 2D simulation results were compared with probe measurements performed in a two-turn ICP chamber. The results demonstrated encouraging agreement with the measured data. This research not only enhances our comprehension of the discharge characteristics but also establishes a framework for optimizing the discharge conditions to enhance the process and effectively regulate external variables.
doi_str_mv 10.1063/5.0223700
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0223700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100631216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-37873e526610eeb43b9934bcaf269e3fff701ce611f89f23715513281dc11d83</originalsourceid><addsrcrecordid>eNp9kM9OwzAMhyMEEmNw4A0icQKpW5ysbXKcJmBIExzYvWpTZ8rUtSVJJ-0FeG6yP2dOtqXPP8sfIY_AJsAyMU0njHORM3ZFRsCkSvI0ZddkxBiHRKpc3ZI777eMAUihRuT3c9ihs7psqG336IPdlMF2Le0M7ZvS70rau65HFyz6iNC5m37b5Sy29aCD3WNzoLob-gbry4KPc-ttHWPbDcUGdXAxEFt0mwOtrQ_OVsPpiBlafWz8PbkxZePx4VLHZP32ul4sk9XX-8divko0SB4SkctcYMqzDBhiNROVUmJW6dLwTKEwxuQMNGYARioTPUCaguASag1QSzEmT-fY-NPPEL8ttt3g2nixEMCiP-CQRer5TGnXee_QFL2zu9IdCmDF0XKRFhfLkX05s17bcDL3D_wH9Vl-rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100631216</pqid></control><display><type>article</type><title>Numerical investigation of plasma properties in Ar/SiH4 inductively coupled plasmas considering electron energy distribution functions</title><source>Alma/SFX Local Collection</source><creator>Kim, Ji-Hoon ; Yoon, Min-Young ; Kim, Gwan ; Kwon, Deuk-Chul ; Lee, Hyo-Chang ; Kim, Jung-Hyung ; Choe, Hee-Hwan</creator><creatorcontrib>Kim, Ji-Hoon ; Yoon, Min-Young ; Kim, Gwan ; Kwon, Deuk-Chul ; Lee, Hyo-Chang ; Kim, Jung-Hyung ; Choe, Hee-Hwan</creatorcontrib><description>In thin film deposition, Ar/SiH4 mixtures are widely used to make polysilicon (poly-Si) and hydrogenated amorphous silicon (a-SiH) layers. Despite extensive research conducted on this mixture, little research has focused on the variations in plasma properties, radicals, and ions that occur during plasma discharge in inductively coupled plasma (ICP) equipment compared to capacitive coupled plasma equipment. In this paper, we investigate the properties of the plasma generated through mathematical modeling of Ar/SiH4 inductive coupled plasma discharge by using the electron energy distribution function (EEDF) obtained by solving the Boltzmann equation. We closely examine the variation in plasma properties and the correlation of plasma variables by controlling the radio frequency power and gas pressure during the process conditions. The Boltzmann equation was computed by assuming the two-term approximation, resulting in a Druyvesteyn-like EEDF due to the high-pressure conditions. To validate the simulation model, the 2D simulation results were compared with probe measurements performed in a two-turn ICP chamber. The results demonstrated encouraging agreement with the measured data. This research not only enhances our comprehension of the discharge characteristics but also establishes a framework for optimizing the discharge conditions to enhance the process and effectively regulate external variables.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0223700</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amorphous silicon ; Boltzmann transport equation ; Control equipment ; Distribution functions ; Electron energy distribution ; Electrons ; External pressure ; Frequency variation ; Gas pressure ; Inductively coupled plasma ; Mathematical analysis ; Mixtures ; Plasma ; Plasma jets ; Polysilicon ; Simulation models ; Thin films</subject><ispartof>Journal of applied physics, 2024-09, Vol.136 (9)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-37873e526610eeb43b9934bcaf269e3fff701ce611f89f23715513281dc11d83</cites><orcidid>0000-0002-1684-5249 ; 0000-0002-8048-5057 ; 0000-0003-2754-1512 ; 0000-0002-7197-6073 ; 0000-0002-9358-9365 ; 0009-0004-5471-8314 ; 0009-0003-0291-9731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, Ji-Hoon</creatorcontrib><creatorcontrib>Yoon, Min-Young</creatorcontrib><creatorcontrib>Kim, Gwan</creatorcontrib><creatorcontrib>Kwon, Deuk-Chul</creatorcontrib><creatorcontrib>Lee, Hyo-Chang</creatorcontrib><creatorcontrib>Kim, Jung-Hyung</creatorcontrib><creatorcontrib>Choe, Hee-Hwan</creatorcontrib><title>Numerical investigation of plasma properties in Ar/SiH4 inductively coupled plasmas considering electron energy distribution functions</title><title>Journal of applied physics</title><description>In thin film deposition, Ar/SiH4 mixtures are widely used to make polysilicon (poly-Si) and hydrogenated amorphous silicon (a-SiH) layers. Despite extensive research conducted on this mixture, little research has focused on the variations in plasma properties, radicals, and ions that occur during plasma discharge in inductively coupled plasma (ICP) equipment compared to capacitive coupled plasma equipment. In this paper, we investigate the properties of the plasma generated through mathematical modeling of Ar/SiH4 inductive coupled plasma discharge by using the electron energy distribution function (EEDF) obtained by solving the Boltzmann equation. We closely examine the variation in plasma properties and the correlation of plasma variables by controlling the radio frequency power and gas pressure during the process conditions. The Boltzmann equation was computed by assuming the two-term approximation, resulting in a Druyvesteyn-like EEDF due to the high-pressure conditions. To validate the simulation model, the 2D simulation results were compared with probe measurements performed in a two-turn ICP chamber. The results demonstrated encouraging agreement with the measured data. This research not only enhances our comprehension of the discharge characteristics but also establishes a framework for optimizing the discharge conditions to enhance the process and effectively regulate external variables.</description><subject>Amorphous silicon</subject><subject>Boltzmann transport equation</subject><subject>Control equipment</subject><subject>Distribution functions</subject><subject>Electron energy distribution</subject><subject>Electrons</subject><subject>External pressure</subject><subject>Frequency variation</subject><subject>Gas pressure</subject><subject>Inductively coupled plasma</subject><subject>Mathematical analysis</subject><subject>Mixtures</subject><subject>Plasma</subject><subject>Plasma jets</subject><subject>Polysilicon</subject><subject>Simulation models</subject><subject>Thin films</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMhyMEEmNw4A0icQKpW5ysbXKcJmBIExzYvWpTZ8rUtSVJJ-0FeG6yP2dOtqXPP8sfIY_AJsAyMU0njHORM3ZFRsCkSvI0ZddkxBiHRKpc3ZI777eMAUihRuT3c9ihs7psqG336IPdlMF2Le0M7ZvS70rau65HFyz6iNC5m37b5Sy29aCD3WNzoLob-gbry4KPc-ttHWPbDcUGdXAxEFt0mwOtrQ_OVsPpiBlafWz8PbkxZePx4VLHZP32ul4sk9XX-8divko0SB4SkctcYMqzDBhiNROVUmJW6dLwTKEwxuQMNGYARioTPUCaguASag1QSzEmT-fY-NPPEL8ttt3g2nixEMCiP-CQRer5TGnXee_QFL2zu9IdCmDF0XKRFhfLkX05s17bcDL3D_wH9Vl-rg</recordid><startdate>20240907</startdate><enddate>20240907</enddate><creator>Kim, Ji-Hoon</creator><creator>Yoon, Min-Young</creator><creator>Kim, Gwan</creator><creator>Kwon, Deuk-Chul</creator><creator>Lee, Hyo-Chang</creator><creator>Kim, Jung-Hyung</creator><creator>Choe, Hee-Hwan</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1684-5249</orcidid><orcidid>https://orcid.org/0000-0002-8048-5057</orcidid><orcidid>https://orcid.org/0000-0003-2754-1512</orcidid><orcidid>https://orcid.org/0000-0002-7197-6073</orcidid><orcidid>https://orcid.org/0000-0002-9358-9365</orcidid><orcidid>https://orcid.org/0009-0004-5471-8314</orcidid><orcidid>https://orcid.org/0009-0003-0291-9731</orcidid></search><sort><creationdate>20240907</creationdate><title>Numerical investigation of plasma properties in Ar/SiH4 inductively coupled plasmas considering electron energy distribution functions</title><author>Kim, Ji-Hoon ; Yoon, Min-Young ; Kim, Gwan ; Kwon, Deuk-Chul ; Lee, Hyo-Chang ; Kim, Jung-Hyung ; Choe, Hee-Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-37873e526610eeb43b9934bcaf269e3fff701ce611f89f23715513281dc11d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amorphous silicon</topic><topic>Boltzmann transport equation</topic><topic>Control equipment</topic><topic>Distribution functions</topic><topic>Electron energy distribution</topic><topic>Electrons</topic><topic>External pressure</topic><topic>Frequency variation</topic><topic>Gas pressure</topic><topic>Inductively coupled plasma</topic><topic>Mathematical analysis</topic><topic>Mixtures</topic><topic>Plasma</topic><topic>Plasma jets</topic><topic>Polysilicon</topic><topic>Simulation models</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ji-Hoon</creatorcontrib><creatorcontrib>Yoon, Min-Young</creatorcontrib><creatorcontrib>Kim, Gwan</creatorcontrib><creatorcontrib>Kwon, Deuk-Chul</creatorcontrib><creatorcontrib>Lee, Hyo-Chang</creatorcontrib><creatorcontrib>Kim, Jung-Hyung</creatorcontrib><creatorcontrib>Choe, Hee-Hwan</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ji-Hoon</au><au>Yoon, Min-Young</au><au>Kim, Gwan</au><au>Kwon, Deuk-Chul</au><au>Lee, Hyo-Chang</au><au>Kim, Jung-Hyung</au><au>Choe, Hee-Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of plasma properties in Ar/SiH4 inductively coupled plasmas considering electron energy distribution functions</atitle><jtitle>Journal of applied physics</jtitle><date>2024-09-07</date><risdate>2024</risdate><volume>136</volume><issue>9</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In thin film deposition, Ar/SiH4 mixtures are widely used to make polysilicon (poly-Si) and hydrogenated amorphous silicon (a-SiH) layers. Despite extensive research conducted on this mixture, little research has focused on the variations in plasma properties, radicals, and ions that occur during plasma discharge in inductively coupled plasma (ICP) equipment compared to capacitive coupled plasma equipment. In this paper, we investigate the properties of the plasma generated through mathematical modeling of Ar/SiH4 inductive coupled plasma discharge by using the electron energy distribution function (EEDF) obtained by solving the Boltzmann equation. We closely examine the variation in plasma properties and the correlation of plasma variables by controlling the radio frequency power and gas pressure during the process conditions. The Boltzmann equation was computed by assuming the two-term approximation, resulting in a Druyvesteyn-like EEDF due to the high-pressure conditions. To validate the simulation model, the 2D simulation results were compared with probe measurements performed in a two-turn ICP chamber. The results demonstrated encouraging agreement with the measured data. This research not only enhances our comprehension of the discharge characteristics but also establishes a framework for optimizing the discharge conditions to enhance the process and effectively regulate external variables.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0223700</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1684-5249</orcidid><orcidid>https://orcid.org/0000-0002-8048-5057</orcidid><orcidid>https://orcid.org/0000-0003-2754-1512</orcidid><orcidid>https://orcid.org/0000-0002-7197-6073</orcidid><orcidid>https://orcid.org/0000-0002-9358-9365</orcidid><orcidid>https://orcid.org/0009-0004-5471-8314</orcidid><orcidid>https://orcid.org/0009-0003-0291-9731</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-09, Vol.136 (9)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0223700
source Alma/SFX Local Collection
subjects Amorphous silicon
Boltzmann transport equation
Control equipment
Distribution functions
Electron energy distribution
Electrons
External pressure
Frequency variation
Gas pressure
Inductively coupled plasma
Mathematical analysis
Mixtures
Plasma
Plasma jets
Polysilicon
Simulation models
Thin films
title Numerical investigation of plasma properties in Ar/SiH4 inductively coupled plasmas considering electron energy distribution functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20plasma%20properties%20in%20Ar/SiH4%20inductively%20coupled%20plasmas%20considering%20electron%20energy%20distribution%20functions&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kim,%20Ji-Hoon&rft.date=2024-09-07&rft.volume=136&rft.issue=9&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0223700&rft_dat=%3Cproquest_cross%3E3100631216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100631216&rft_id=info:pmid/&rfr_iscdi=true