Theory and simulation of the electrothermal instability in pulsed power electrode plasmas

Linear theory of the electrothermal instability is rederived and applied to conditions expected in pulsed power electrode surface plasmas comprised of either hydrogen or carbon. The analysis includes losses due to Coulomb collisions, inelastic processes derived from a collisional radiative model, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2024-10, Vol.31 (10)
Hauptverfasser: Vazsonyi, A. R., Swanekamp, S. B., Ottinger, P. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physics of plasmas
container_volume 31
creator Vazsonyi, A. R.
Swanekamp, S. B.
Ottinger, P. F.
description Linear theory of the electrothermal instability is rederived and applied to conditions expected in pulsed power electrode surface plasmas comprised of either hydrogen or carbon. The analysis includes losses due to Coulomb collisions, inelastic processes derived from a collisional radiative model, and thermal conduction. The predicted growth rates are relevant for pulse durations typical of pulsed power devices. Linear theory reveals that the growth rate peaks at a characteristic wavenumber kmax, which is dependent on electron current density Je, number density ne, and temperature Te. Analysis of nonlinear simulations finds that saturation occurs as a result of Coulomb collisions, which limit the electron temperature to go no lower than the ion temperature such that Te≳Ti. When the instability is driven by a perturbation with broadband sinusoidal content, the peak in the energy spectrum nonlinearly shifts away from kmax toward smaller wavenumbers (or longer wavelengths) during saturation. The ETI is shown to be capable of driving plasma filaments with perturbed current densities and electron temperatures that exceed the initial, steady-state values.
doi_str_mv 10.1063/5.0222434
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0222434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123907551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-6530b4f5a8d58165223e61861ca3d9adfd07981e2685a13d2c827eae2ea663ab3</originalsourceid><addsrcrecordid>eNp90M1LwzAYBvAgCs7pwf8g4EmhMx9Nmh5l-AUDLxP0FN41Kctom5qkSP97Ozevnt7n8ON54UHompIFJZLfiwVhjOU8P0EzSlSZFbLIT_e5IJmU-cc5uohxRwjJpVAz9LneWh9GDJ3B0bVDA8n5Dvsap63FtrFVCn6KoYUGuy4m2LjGpXHKuB-aaA3u_bcNf9RY3DcQW4iX6KyGCVwd7xy9Pz2uly_Z6u35dfmwyiqqWMqk4GST1wKUEYpKwRi3kipJK-CmBFMbUpSKWiaVAMoNqxQrLFhmQUoOGz5HN4fePvivwcakd34I3fRSc8p4SQoh6KRuD6oKPsZga90H10IYNSV6v5wW-rjcZO8ONlYu_e7xD_4BvRVuJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123907551</pqid></control><display><type>article</type><title>Theory and simulation of the electrothermal instability in pulsed power electrode plasmas</title><source>Alma/SFX Local Collection</source><creator>Vazsonyi, A. R. ; Swanekamp, S. B. ; Ottinger, P. F.</creator><creatorcontrib>Vazsonyi, A. R. ; Swanekamp, S. B. ; Ottinger, P. F.</creatorcontrib><description>Linear theory of the electrothermal instability is rederived and applied to conditions expected in pulsed power electrode surface plasmas comprised of either hydrogen or carbon. The analysis includes losses due to Coulomb collisions, inelastic processes derived from a collisional radiative model, and thermal conduction. The predicted growth rates are relevant for pulse durations typical of pulsed power devices. Linear theory reveals that the growth rate peaks at a characteristic wavenumber kmax, which is dependent on electron current density Je, number density ne, and temperature Te. Analysis of nonlinear simulations finds that saturation occurs as a result of Coulomb collisions, which limit the electron temperature to go no lower than the ion temperature such that Te≳Ti. When the instability is driven by a perturbation with broadband sinusoidal content, the peak in the energy spectrum nonlinearly shifts away from kmax toward smaller wavenumbers (or longer wavelengths) during saturation. The ETI is shown to be capable of driving plasma filaments with perturbed current densities and electron temperatures that exceed the initial, steady-state values.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0222434</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Broadband ; Conduction cooling ; Coulomb collisions ; Current density ; Electrodes ; Electron energy ; Electrons ; Energy spectra ; Filaments ; Ion temperature ; Plasmas (physics) ; Stability ; Surface stability ; Temperature ; Temperature dependence ; Wavelengths</subject><ispartof>Physics of plasmas, 2024-10, Vol.31 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-6530b4f5a8d58165223e61861ca3d9adfd07981e2685a13d2c827eae2ea663ab3</cites><orcidid>0000-0001-9531-7139 ; 0000-0001-9901-7379 ; 0000-0002-6559-1118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Vazsonyi, A. R.</creatorcontrib><creatorcontrib>Swanekamp, S. B.</creatorcontrib><creatorcontrib>Ottinger, P. F.</creatorcontrib><title>Theory and simulation of the electrothermal instability in pulsed power electrode plasmas</title><title>Physics of plasmas</title><description>Linear theory of the electrothermal instability is rederived and applied to conditions expected in pulsed power electrode surface plasmas comprised of either hydrogen or carbon. The analysis includes losses due to Coulomb collisions, inelastic processes derived from a collisional radiative model, and thermal conduction. The predicted growth rates are relevant for pulse durations typical of pulsed power devices. Linear theory reveals that the growth rate peaks at a characteristic wavenumber kmax, which is dependent on electron current density Je, number density ne, and temperature Te. Analysis of nonlinear simulations finds that saturation occurs as a result of Coulomb collisions, which limit the electron temperature to go no lower than the ion temperature such that Te≳Ti. When the instability is driven by a perturbation with broadband sinusoidal content, the peak in the energy spectrum nonlinearly shifts away from kmax toward smaller wavenumbers (or longer wavelengths) during saturation. The ETI is shown to be capable of driving plasma filaments with perturbed current densities and electron temperatures that exceed the initial, steady-state values.</description><subject>Broadband</subject><subject>Conduction cooling</subject><subject>Coulomb collisions</subject><subject>Current density</subject><subject>Electrodes</subject><subject>Electron energy</subject><subject>Electrons</subject><subject>Energy spectra</subject><subject>Filaments</subject><subject>Ion temperature</subject><subject>Plasmas (physics)</subject><subject>Stability</subject><subject>Surface stability</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Wavelengths</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90M1LwzAYBvAgCs7pwf8g4EmhMx9Nmh5l-AUDLxP0FN41Kctom5qkSP97Ozevnt7n8ON54UHompIFJZLfiwVhjOU8P0EzSlSZFbLIT_e5IJmU-cc5uohxRwjJpVAz9LneWh9GDJ3B0bVDA8n5Dvsap63FtrFVCn6KoYUGuy4m2LjGpXHKuB-aaA3u_bcNf9RY3DcQW4iX6KyGCVwd7xy9Pz2uly_Z6u35dfmwyiqqWMqk4GST1wKUEYpKwRi3kipJK-CmBFMbUpSKWiaVAMoNqxQrLFhmQUoOGz5HN4fePvivwcakd34I3fRSc8p4SQoh6KRuD6oKPsZga90H10IYNSV6v5wW-rjcZO8ONlYu_e7xD_4BvRVuJg</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Vazsonyi, A. R.</creator><creator>Swanekamp, S. B.</creator><creator>Ottinger, P. F.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9531-7139</orcidid><orcidid>https://orcid.org/0000-0001-9901-7379</orcidid><orcidid>https://orcid.org/0000-0002-6559-1118</orcidid></search><sort><creationdate>202410</creationdate><title>Theory and simulation of the electrothermal instability in pulsed power electrode plasmas</title><author>Vazsonyi, A. R. ; Swanekamp, S. B. ; Ottinger, P. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-6530b4f5a8d58165223e61861ca3d9adfd07981e2685a13d2c827eae2ea663ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Broadband</topic><topic>Conduction cooling</topic><topic>Coulomb collisions</topic><topic>Current density</topic><topic>Electrodes</topic><topic>Electron energy</topic><topic>Electrons</topic><topic>Energy spectra</topic><topic>Filaments</topic><topic>Ion temperature</topic><topic>Plasmas (physics)</topic><topic>Stability</topic><topic>Surface stability</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vazsonyi, A. R.</creatorcontrib><creatorcontrib>Swanekamp, S. B.</creatorcontrib><creatorcontrib>Ottinger, P. F.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vazsonyi, A. R.</au><au>Swanekamp, S. B.</au><au>Ottinger, P. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory and simulation of the electrothermal instability in pulsed power electrode plasmas</atitle><jtitle>Physics of plasmas</jtitle><date>2024-10</date><risdate>2024</risdate><volume>31</volume><issue>10</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Linear theory of the electrothermal instability is rederived and applied to conditions expected in pulsed power electrode surface plasmas comprised of either hydrogen or carbon. The analysis includes losses due to Coulomb collisions, inelastic processes derived from a collisional radiative model, and thermal conduction. The predicted growth rates are relevant for pulse durations typical of pulsed power devices. Linear theory reveals that the growth rate peaks at a characteristic wavenumber kmax, which is dependent on electron current density Je, number density ne, and temperature Te. Analysis of nonlinear simulations finds that saturation occurs as a result of Coulomb collisions, which limit the electron temperature to go no lower than the ion temperature such that Te≳Ti. When the instability is driven by a perturbation with broadband sinusoidal content, the peak in the energy spectrum nonlinearly shifts away from kmax toward smaller wavenumbers (or longer wavelengths) during saturation. The ETI is shown to be capable of driving plasma filaments with perturbed current densities and electron temperatures that exceed the initial, steady-state values.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0222434</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9531-7139</orcidid><orcidid>https://orcid.org/0000-0001-9901-7379</orcidid><orcidid>https://orcid.org/0000-0002-6559-1118</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2024-10, Vol.31 (10)
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_5_0222434
source Alma/SFX Local Collection
subjects Broadband
Conduction cooling
Coulomb collisions
Current density
Electrodes
Electron energy
Electrons
Energy spectra
Filaments
Ion temperature
Plasmas (physics)
Stability
Surface stability
Temperature
Temperature dependence
Wavelengths
title Theory and simulation of the electrothermal instability in pulsed power electrode plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20and%20simulation%20of%20the%20electrothermal%20instability%20in%20pulsed%20power%20electrode%20plasmas&rft.jtitle=Physics%20of%20plasmas&rft.au=Vazsonyi,%20A.%20R.&rft.date=2024-10&rft.volume=31&rft.issue=10&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0222434&rft_dat=%3Cproquest_cross%3E3123907551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123907551&rft_id=info:pmid/&rfr_iscdi=true