Theory and simulation of the electrothermal instability in pulsed power electrode plasmas
Linear theory of the electrothermal instability is rederived and applied to conditions expected in pulsed power electrode surface plasmas comprised of either hydrogen or carbon. The analysis includes losses due to Coulomb collisions, inelastic processes derived from a collisional radiative model, an...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2024-10, Vol.31 (10) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 31 |
creator | Vazsonyi, A. R. Swanekamp, S. B. Ottinger, P. F. |
description | Linear theory of the electrothermal instability is rederived and applied to conditions expected in pulsed power electrode surface plasmas comprised of either hydrogen or carbon. The analysis includes losses due to Coulomb collisions, inelastic processes derived from a collisional radiative model, and thermal conduction. The predicted growth rates are relevant for pulse durations typical of pulsed power devices. Linear theory reveals that the growth rate peaks at a characteristic wavenumber
kmax, which is dependent on electron current density
Je, number density
ne, and temperature
Te. Analysis of nonlinear simulations finds that saturation occurs as a result of Coulomb collisions, which limit the electron temperature to go no lower than the ion temperature such that
Te≳Ti. When the instability is driven by a perturbation with broadband sinusoidal content, the peak in the energy spectrum nonlinearly shifts away from
kmax toward smaller wavenumbers (or longer wavelengths) during saturation. The ETI is shown to be capable of driving plasma filaments with perturbed current densities and electron temperatures that exceed the initial, steady-state values. |
doi_str_mv | 10.1063/5.0222434 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0222434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123907551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-6530b4f5a8d58165223e61861ca3d9adfd07981e2685a13d2c827eae2ea663ab3</originalsourceid><addsrcrecordid>eNp90M1LwzAYBvAgCs7pwf8g4EmhMx9Nmh5l-AUDLxP0FN41Kctom5qkSP97Ozevnt7n8ON54UHompIFJZLfiwVhjOU8P0EzSlSZFbLIT_e5IJmU-cc5uohxRwjJpVAz9LneWh9GDJ3B0bVDA8n5Dvsap63FtrFVCn6KoYUGuy4m2LjGpXHKuB-aaA3u_bcNf9RY3DcQW4iX6KyGCVwd7xy9Pz2uly_Z6u35dfmwyiqqWMqk4GST1wKUEYpKwRi3kipJK-CmBFMbUpSKWiaVAMoNqxQrLFhmQUoOGz5HN4fePvivwcakd34I3fRSc8p4SQoh6KRuD6oKPsZga90H10IYNSV6v5wW-rjcZO8ONlYu_e7xD_4BvRVuJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123907551</pqid></control><display><type>article</type><title>Theory and simulation of the electrothermal instability in pulsed power electrode plasmas</title><source>Alma/SFX Local Collection</source><creator>Vazsonyi, A. R. ; Swanekamp, S. B. ; Ottinger, P. F.</creator><creatorcontrib>Vazsonyi, A. R. ; Swanekamp, S. B. ; Ottinger, P. F.</creatorcontrib><description>Linear theory of the electrothermal instability is rederived and applied to conditions expected in pulsed power electrode surface plasmas comprised of either hydrogen or carbon. The analysis includes losses due to Coulomb collisions, inelastic processes derived from a collisional radiative model, and thermal conduction. The predicted growth rates are relevant for pulse durations typical of pulsed power devices. Linear theory reveals that the growth rate peaks at a characteristic wavenumber
kmax, which is dependent on electron current density
Je, number density
ne, and temperature
Te. Analysis of nonlinear simulations finds that saturation occurs as a result of Coulomb collisions, which limit the electron temperature to go no lower than the ion temperature such that
Te≳Ti. When the instability is driven by a perturbation with broadband sinusoidal content, the peak in the energy spectrum nonlinearly shifts away from
kmax toward smaller wavenumbers (or longer wavelengths) during saturation. The ETI is shown to be capable of driving plasma filaments with perturbed current densities and electron temperatures that exceed the initial, steady-state values.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0222434</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Broadband ; Conduction cooling ; Coulomb collisions ; Current density ; Electrodes ; Electron energy ; Electrons ; Energy spectra ; Filaments ; Ion temperature ; Plasmas (physics) ; Stability ; Surface stability ; Temperature ; Temperature dependence ; Wavelengths</subject><ispartof>Physics of plasmas, 2024-10, Vol.31 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-6530b4f5a8d58165223e61861ca3d9adfd07981e2685a13d2c827eae2ea663ab3</cites><orcidid>0000-0001-9531-7139 ; 0000-0001-9901-7379 ; 0000-0002-6559-1118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Vazsonyi, A. R.</creatorcontrib><creatorcontrib>Swanekamp, S. B.</creatorcontrib><creatorcontrib>Ottinger, P. F.</creatorcontrib><title>Theory and simulation of the electrothermal instability in pulsed power electrode plasmas</title><title>Physics of plasmas</title><description>Linear theory of the electrothermal instability is rederived and applied to conditions expected in pulsed power electrode surface plasmas comprised of either hydrogen or carbon. The analysis includes losses due to Coulomb collisions, inelastic processes derived from a collisional radiative model, and thermal conduction. The predicted growth rates are relevant for pulse durations typical of pulsed power devices. Linear theory reveals that the growth rate peaks at a characteristic wavenumber
kmax, which is dependent on electron current density
Je, number density
ne, and temperature
Te. Analysis of nonlinear simulations finds that saturation occurs as a result of Coulomb collisions, which limit the electron temperature to go no lower than the ion temperature such that
Te≳Ti. When the instability is driven by a perturbation with broadband sinusoidal content, the peak in the energy spectrum nonlinearly shifts away from
kmax toward smaller wavenumbers (or longer wavelengths) during saturation. The ETI is shown to be capable of driving plasma filaments with perturbed current densities and electron temperatures that exceed the initial, steady-state values.</description><subject>Broadband</subject><subject>Conduction cooling</subject><subject>Coulomb collisions</subject><subject>Current density</subject><subject>Electrodes</subject><subject>Electron energy</subject><subject>Electrons</subject><subject>Energy spectra</subject><subject>Filaments</subject><subject>Ion temperature</subject><subject>Plasmas (physics)</subject><subject>Stability</subject><subject>Surface stability</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Wavelengths</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90M1LwzAYBvAgCs7pwf8g4EmhMx9Nmh5l-AUDLxP0FN41Kctom5qkSP97Ozevnt7n8ON54UHompIFJZLfiwVhjOU8P0EzSlSZFbLIT_e5IJmU-cc5uohxRwjJpVAz9LneWh9GDJ3B0bVDA8n5Dvsap63FtrFVCn6KoYUGuy4m2LjGpXHKuB-aaA3u_bcNf9RY3DcQW4iX6KyGCVwd7xy9Pz2uly_Z6u35dfmwyiqqWMqk4GST1wKUEYpKwRi3kipJK-CmBFMbUpSKWiaVAMoNqxQrLFhmQUoOGz5HN4fePvivwcakd34I3fRSc8p4SQoh6KRuD6oKPsZga90H10IYNSV6v5wW-rjcZO8ONlYu_e7xD_4BvRVuJg</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Vazsonyi, A. R.</creator><creator>Swanekamp, S. B.</creator><creator>Ottinger, P. F.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9531-7139</orcidid><orcidid>https://orcid.org/0000-0001-9901-7379</orcidid><orcidid>https://orcid.org/0000-0002-6559-1118</orcidid></search><sort><creationdate>202410</creationdate><title>Theory and simulation of the electrothermal instability in pulsed power electrode plasmas</title><author>Vazsonyi, A. R. ; Swanekamp, S. B. ; Ottinger, P. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-6530b4f5a8d58165223e61861ca3d9adfd07981e2685a13d2c827eae2ea663ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Broadband</topic><topic>Conduction cooling</topic><topic>Coulomb collisions</topic><topic>Current density</topic><topic>Electrodes</topic><topic>Electron energy</topic><topic>Electrons</topic><topic>Energy spectra</topic><topic>Filaments</topic><topic>Ion temperature</topic><topic>Plasmas (physics)</topic><topic>Stability</topic><topic>Surface stability</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vazsonyi, A. R.</creatorcontrib><creatorcontrib>Swanekamp, S. B.</creatorcontrib><creatorcontrib>Ottinger, P. F.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vazsonyi, A. R.</au><au>Swanekamp, S. B.</au><au>Ottinger, P. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory and simulation of the electrothermal instability in pulsed power electrode plasmas</atitle><jtitle>Physics of plasmas</jtitle><date>2024-10</date><risdate>2024</risdate><volume>31</volume><issue>10</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Linear theory of the electrothermal instability is rederived and applied to conditions expected in pulsed power electrode surface plasmas comprised of either hydrogen or carbon. The analysis includes losses due to Coulomb collisions, inelastic processes derived from a collisional radiative model, and thermal conduction. The predicted growth rates are relevant for pulse durations typical of pulsed power devices. Linear theory reveals that the growth rate peaks at a characteristic wavenumber
kmax, which is dependent on electron current density
Je, number density
ne, and temperature
Te. Analysis of nonlinear simulations finds that saturation occurs as a result of Coulomb collisions, which limit the electron temperature to go no lower than the ion temperature such that
Te≳Ti. When the instability is driven by a perturbation with broadband sinusoidal content, the peak in the energy spectrum nonlinearly shifts away from
kmax toward smaller wavenumbers (or longer wavelengths) during saturation. The ETI is shown to be capable of driving plasma filaments with perturbed current densities and electron temperatures that exceed the initial, steady-state values.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0222434</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9531-7139</orcidid><orcidid>https://orcid.org/0000-0001-9901-7379</orcidid><orcidid>https://orcid.org/0000-0002-6559-1118</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2024-10, Vol.31 (10) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0222434 |
source | Alma/SFX Local Collection |
subjects | Broadband Conduction cooling Coulomb collisions Current density Electrodes Electron energy Electrons Energy spectra Filaments Ion temperature Plasmas (physics) Stability Surface stability Temperature Temperature dependence Wavelengths |
title | Theory and simulation of the electrothermal instability in pulsed power electrode plasmas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20and%20simulation%20of%20the%20electrothermal%20instability%20in%20pulsed%20power%20electrode%20plasmas&rft.jtitle=Physics%20of%20plasmas&rft.au=Vazsonyi,%20A.%20R.&rft.date=2024-10&rft.volume=31&rft.issue=10&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0222434&rft_dat=%3Cproquest_cross%3E3123907551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123907551&rft_id=info:pmid/&rfr_iscdi=true |