A robust three-dimensional numerical model for heat transfer characteristics in sintered–grooved thin flat heat pipes

In the current research, a robust three-dimensional numerical model is developed for thin flat heat pipes (TFHPs) with a hybrid sintered–grooved wick structure. Numerical simulations for laminar incompressible flow in liquid wick and ideal gas incompressible flow in the vapor core are performed to p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-08, Vol.36 (8)
Hauptverfasser: Abdizadeh, G. R., Noori, Sahar, Saeedi, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Abdizadeh, G. R.
Noori, Sahar
Saeedi, Mohammad
description In the current research, a robust three-dimensional numerical model is developed for thin flat heat pipes (TFHPs) with a hybrid sintered–grooved wick structure. Numerical simulations for laminar incompressible flow in liquid wick and ideal gas incompressible flow in the vapor core are performed to predict temperature, pressure, and velocity profiles. The model utilized non-Darcy transport through a porous wick to determine liquid flow in the liquid-wick section. The mass flow rate of the fluid at the liquid–vapor interface is modeled using kinetic theory. Furthermore, the hybrid wick structure is modeled as an inhomogeneous porous medium. Additionally, this formulation enhances the stability and convergence of the numerical solution and accelerates the solving time. The developed model is validated with experimental data, showing very good agreement with axial wall temperatures, with a maximum error of about 2% in steady-state conditions. The numerical results, including system pressure, wall temperature, mass transfer at the liquid and vapor interface, and velocity magnitude streamlines, are investigated for a comprehensive understanding of the flow physics and performance of the hybrid wick. The results show that, at heat inputs of 5, 10, 20, and 30 W, the thermal efficiency of hybrid wick TFHP is 4.9%, 10.4%, 34.38%, and 23.3%, respectively, greater than that of the grooved wick. The TFHP with a hybrid wick indicates the best thermal efficiency at a heat input of 20 W, with a thermal resistance of 0.95 K/W.
doi_str_mv 10.1063/5.0217891
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0217891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089650279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-d620f32592403ead6e53c5184d5cd2a0d4328555d43739480784c1062eb6ec113</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqWw4AaWWIGU4p_YSZZVRQGpEhtYR649oa6SONgOiB134IacBJd2zWq-Gb0ZaR5Cl5TMKJH8VswIo0VZ0SM0oaSsskJKebzLBcmk5PQUnYWwJYTwiskJ-phj79ZjiDhuPEBmbAd9sK5XLe7HDrzVKXXOQIsb5_EGVEK96kMDHuuN8krHRIVodcC2x8H2qQfz8_X96p17B5Mup3nTpsW_7cEOEM7RSaPaABeHOkUvy7vnxUO2erp_XMxXmaYli5mRjDSciYrlhIMyEgTXgpa5EdowRUzOWSmESLXgVV6Sosx1EsFgLUFTyqfoan938O5thBDrrRt9-i7UPOmRgrCiStT1ntLeheChqQdvO-U_a0rqndda1Aevib3Zs0HbqGJS9Q_8C-WpeTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089650279</pqid></control><display><type>article</type><title>A robust three-dimensional numerical model for heat transfer characteristics in sintered–grooved thin flat heat pipes</title><source>Scitation (American Institute of Physics)</source><creator>Abdizadeh, G. R. ; Noori, Sahar ; Saeedi, Mohammad</creator><creatorcontrib>Abdizadeh, G. R. ; Noori, Sahar ; Saeedi, Mohammad</creatorcontrib><description>In the current research, a robust three-dimensional numerical model is developed for thin flat heat pipes (TFHPs) with a hybrid sintered–grooved wick structure. Numerical simulations for laminar incompressible flow in liquid wick and ideal gas incompressible flow in the vapor core are performed to predict temperature, pressure, and velocity profiles. The model utilized non-Darcy transport through a porous wick to determine liquid flow in the liquid-wick section. The mass flow rate of the fluid at the liquid–vapor interface is modeled using kinetic theory. Furthermore, the hybrid wick structure is modeled as an inhomogeneous porous medium. Additionally, this formulation enhances the stability and convergence of the numerical solution and accelerates the solving time. The developed model is validated with experimental data, showing very good agreement with axial wall temperatures, with a maximum error of about 2% in steady-state conditions. The numerical results, including system pressure, wall temperature, mass transfer at the liquid and vapor interface, and velocity magnitude streamlines, are investigated for a comprehensive understanding of the flow physics and performance of the hybrid wick. The results show that, at heat inputs of 5, 10, 20, and 30 W, the thermal efficiency of hybrid wick TFHP is 4.9%, 10.4%, 34.38%, and 23.3%, respectively, greater than that of the grooved wick. The TFHP with a hybrid wick indicates the best thermal efficiency at a heat input of 20 W, with a thermal resistance of 0.95 K/W.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0217891</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Fluid flow ; Heat ; Heat pipes ; Heat transfer ; Ideal gas ; Incompressible flow ; Kinetic theory ; Laminar flow ; Liquid flow ; Mass flow rate ; Mass transfer ; Numerical models ; Porous media ; Robustness (mathematics) ; Sintering (powder metallurgy) ; Thermal resistance ; Thermodynamic efficiency ; Vapors ; Velocity distribution ; Wall temperature</subject><ispartof>Physics of fluids (1994), 2024-08, Vol.36 (8)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-d620f32592403ead6e53c5184d5cd2a0d4328555d43739480784c1062eb6ec113</cites><orcidid>0000-0002-6425-2501 ; 0000-0003-3348-1800 ; 0009-0006-8827-9350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Abdizadeh, G. R.</creatorcontrib><creatorcontrib>Noori, Sahar</creatorcontrib><creatorcontrib>Saeedi, Mohammad</creatorcontrib><title>A robust three-dimensional numerical model for heat transfer characteristics in sintered–grooved thin flat heat pipes</title><title>Physics of fluids (1994)</title><description>In the current research, a robust three-dimensional numerical model is developed for thin flat heat pipes (TFHPs) with a hybrid sintered–grooved wick structure. Numerical simulations for laminar incompressible flow in liquid wick and ideal gas incompressible flow in the vapor core are performed to predict temperature, pressure, and velocity profiles. The model utilized non-Darcy transport through a porous wick to determine liquid flow in the liquid-wick section. The mass flow rate of the fluid at the liquid–vapor interface is modeled using kinetic theory. Furthermore, the hybrid wick structure is modeled as an inhomogeneous porous medium. Additionally, this formulation enhances the stability and convergence of the numerical solution and accelerates the solving time. The developed model is validated with experimental data, showing very good agreement with axial wall temperatures, with a maximum error of about 2% in steady-state conditions. The numerical results, including system pressure, wall temperature, mass transfer at the liquid and vapor interface, and velocity magnitude streamlines, are investigated for a comprehensive understanding of the flow physics and performance of the hybrid wick. The results show that, at heat inputs of 5, 10, 20, and 30 W, the thermal efficiency of hybrid wick TFHP is 4.9%, 10.4%, 34.38%, and 23.3%, respectively, greater than that of the grooved wick. The TFHP with a hybrid wick indicates the best thermal efficiency at a heat input of 20 W, with a thermal resistance of 0.95 K/W.</description><subject>Fluid flow</subject><subject>Heat</subject><subject>Heat pipes</subject><subject>Heat transfer</subject><subject>Ideal gas</subject><subject>Incompressible flow</subject><subject>Kinetic theory</subject><subject>Laminar flow</subject><subject>Liquid flow</subject><subject>Mass flow rate</subject><subject>Mass transfer</subject><subject>Numerical models</subject><subject>Porous media</subject><subject>Robustness (mathematics)</subject><subject>Sintering (powder metallurgy)</subject><subject>Thermal resistance</subject><subject>Thermodynamic efficiency</subject><subject>Vapors</subject><subject>Velocity distribution</subject><subject>Wall temperature</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqWw4AaWWIGU4p_YSZZVRQGpEhtYR649oa6SONgOiB134IacBJd2zWq-Gb0ZaR5Cl5TMKJH8VswIo0VZ0SM0oaSsskJKebzLBcmk5PQUnYWwJYTwiskJ-phj79ZjiDhuPEBmbAd9sK5XLe7HDrzVKXXOQIsb5_EGVEK96kMDHuuN8krHRIVodcC2x8H2qQfz8_X96p17B5Mup3nTpsW_7cEOEM7RSaPaABeHOkUvy7vnxUO2erp_XMxXmaYli5mRjDSciYrlhIMyEgTXgpa5EdowRUzOWSmESLXgVV6Sosx1EsFgLUFTyqfoan938O5thBDrrRt9-i7UPOmRgrCiStT1ntLeheChqQdvO-U_a0rqndda1Aevib3Zs0HbqGJS9Q_8C-WpeTU</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Abdizadeh, G. R.</creator><creator>Noori, Sahar</creator><creator>Saeedi, Mohammad</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6425-2501</orcidid><orcidid>https://orcid.org/0000-0003-3348-1800</orcidid><orcidid>https://orcid.org/0009-0006-8827-9350</orcidid></search><sort><creationdate>202408</creationdate><title>A robust three-dimensional numerical model for heat transfer characteristics in sintered–grooved thin flat heat pipes</title><author>Abdizadeh, G. R. ; Noori, Sahar ; Saeedi, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-d620f32592403ead6e53c5184d5cd2a0d4328555d43739480784c1062eb6ec113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fluid flow</topic><topic>Heat</topic><topic>Heat pipes</topic><topic>Heat transfer</topic><topic>Ideal gas</topic><topic>Incompressible flow</topic><topic>Kinetic theory</topic><topic>Laminar flow</topic><topic>Liquid flow</topic><topic>Mass flow rate</topic><topic>Mass transfer</topic><topic>Numerical models</topic><topic>Porous media</topic><topic>Robustness (mathematics)</topic><topic>Sintering (powder metallurgy)</topic><topic>Thermal resistance</topic><topic>Thermodynamic efficiency</topic><topic>Vapors</topic><topic>Velocity distribution</topic><topic>Wall temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdizadeh, G. R.</creatorcontrib><creatorcontrib>Noori, Sahar</creatorcontrib><creatorcontrib>Saeedi, Mohammad</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdizadeh, G. R.</au><au>Noori, Sahar</au><au>Saeedi, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust three-dimensional numerical model for heat transfer characteristics in sintered–grooved thin flat heat pipes</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-08</date><risdate>2024</risdate><volume>36</volume><issue>8</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>In the current research, a robust three-dimensional numerical model is developed for thin flat heat pipes (TFHPs) with a hybrid sintered–grooved wick structure. Numerical simulations for laminar incompressible flow in liquid wick and ideal gas incompressible flow in the vapor core are performed to predict temperature, pressure, and velocity profiles. The model utilized non-Darcy transport through a porous wick to determine liquid flow in the liquid-wick section. The mass flow rate of the fluid at the liquid–vapor interface is modeled using kinetic theory. Furthermore, the hybrid wick structure is modeled as an inhomogeneous porous medium. Additionally, this formulation enhances the stability and convergence of the numerical solution and accelerates the solving time. The developed model is validated with experimental data, showing very good agreement with axial wall temperatures, with a maximum error of about 2% in steady-state conditions. The numerical results, including system pressure, wall temperature, mass transfer at the liquid and vapor interface, and velocity magnitude streamlines, are investigated for a comprehensive understanding of the flow physics and performance of the hybrid wick. The results show that, at heat inputs of 5, 10, 20, and 30 W, the thermal efficiency of hybrid wick TFHP is 4.9%, 10.4%, 34.38%, and 23.3%, respectively, greater than that of the grooved wick. The TFHP with a hybrid wick indicates the best thermal efficiency at a heat input of 20 W, with a thermal resistance of 0.95 K/W.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0217891</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6425-2501</orcidid><orcidid>https://orcid.org/0000-0003-3348-1800</orcidid><orcidid>https://orcid.org/0009-0006-8827-9350</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-08, Vol.36 (8)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0217891
source Scitation (American Institute of Physics)
subjects Fluid flow
Heat
Heat pipes
Heat transfer
Ideal gas
Incompressible flow
Kinetic theory
Laminar flow
Liquid flow
Mass flow rate
Mass transfer
Numerical models
Porous media
Robustness (mathematics)
Sintering (powder metallurgy)
Thermal resistance
Thermodynamic efficiency
Vapors
Velocity distribution
Wall temperature
title A robust three-dimensional numerical model for heat transfer characteristics in sintered–grooved thin flat heat pipes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20three-dimensional%20numerical%20model%20for%20heat%20transfer%20characteristics%20in%20sintered%E2%80%93grooved%20thin%20flat%20heat%20pipes&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Abdizadeh,%20G.%20R.&rft.date=2024-08&rft.volume=36&rft.issue=8&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0217891&rft_dat=%3Cproquest_cross%3E3089650279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089650279&rft_id=info:pmid/&rfr_iscdi=true