Self-adaptive and time divide-and-conquer physics-informed neural networks for two-phase flow simulations using interface tracking methods

Physics-informed neural networks (PINNs) are emerging as a promising artificial intelligence approach for solving complex two-phase flow simulations. A critical challenge in these simulations is an accurate representation of the gas–liquid interface using interface tracking methods. While numerous s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-07, Vol.36 (7)
Hauptverfasser: Zhou, Wen, Miwa, Shuichiro, Okamoto, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!