Self-adaptive and time divide-and-conquer physics-informed neural networks for two-phase flow simulations using interface tracking methods
Physics-informed neural networks (PINNs) are emerging as a promising artificial intelligence approach for solving complex two-phase flow simulations. A critical challenge in these simulations is an accurate representation of the gas–liquid interface using interface tracking methods. While numerous s...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-07, Vol.36 (7) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!