From 2e− to 4e− pathway in the alkaline oxygen reduction reaction on Au(100): Kinetic circumvention of the volcano curve

We report the free energy barriers for the elementary reactions in the 2e− and 4e− oxygen reduction reaction (ORR) steps on Au(100) in an alkaline solution. Due to the weak adsorption energy of O2 on Au(100), the barrier for the association channel is very low, and the 2e− pathway is clearly favored...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-06, Vol.160 (24)
Hauptverfasser: Li, Yuke, Liu, Bing-Yu, Chen, Yanxia, Liu, Zhi-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title The Journal of chemical physics
container_volume 160
creator Li, Yuke
Liu, Bing-Yu
Chen, Yanxia
Liu, Zhi-Feng
description We report the free energy barriers for the elementary reactions in the 2e− and 4e− oxygen reduction reaction (ORR) steps on Au(100) in an alkaline solution. Due to the weak adsorption energy of O2 on Au(100), the barrier for the association channel is very low, and the 2e− pathway is clearly favored, while the barrier for the O–O dissociation channel is significantly higher at 0.5 eV. Above 0.7 V reversible hydrogen electrode (RHE), the association channel becomes thermodynamically unfavorable, which opens up the O–O dissociation channel, leading to the 4e− pathway. The low adsorption energy of oxygenated species on Au is now an advantage, and residue ORR current can be observed up to the 1.0–1.2 V region (RHE). In contrast, the O–O dissociation barrier on Au(111) is significantly higher, at close to 0.9 eV, due to coupling with surface reorganization, which explains the lower ORR activity on Au(111) than that on Au(100). In combination with the previously suggested outer sphere electron transfer to O2 for its initial adsorption, these results provide a consistent explanation for the features in the experimentally measured polarization curve for the alkaline ORR on Au(100) and demonstrate an ORR mechanism distinct from that on Pt(111). It also highlights the importance to consider the spin state of O2 in ORR and to understand the activation barriers, in addition to the adsorption energies, to account for the features observed in electrochemical measurements.
doi_str_mv 10.1063/5.0211477
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0211477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072046570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-94904bdf964d998bf6676137f01744a99858cf5d0d0cccb60e5b3950a039fbd63</originalsourceid><addsrcrecordid>eNp90c1KxDAQB_Agiq6rB19AAl5WoTpp06TxJuIXCl70XNI01WrbrEm7uuADePYRfRLT7erBgxDIMPz4k8wgtEPgkACLjuJDCAmhnK-gEYFEBJwJWEUj8O1AMGAbaNO5JwAgPKTraCNKBGEh4yP0fm5NjUP99fGJW4PpopjK9vFVznHZ4PZRY1k9y6psNDZv8wfdYKvzTrWl6Ss5FP6cdBMCsH-Mrz1tS4VVaVVXz3QziGKRNTOVko3BqrMzvYXWClk5vb28x-j-_Ozu9DK4ub24Oj25CVQESRsIKoBmeSEYzYVIsoIxzkjEC_8dSqVvxYkq4hxyUEplDHScRSIGCZEospxFYzQZcqfWvHTatWldOqWrSjbadC6NgIf9bAR4uveHPpnONv51g6Is5r3aH5Syxjmri3Rqy1raeUog7VeSxulyJd7uLhO7rNb5r_zZgQcHA3CqbGU_rH_SvgHs3ZNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072046570</pqid></control><display><type>article</type><title>From 2e− to 4e− pathway in the alkaline oxygen reduction reaction on Au(100): Kinetic circumvention of the volcano curve</title><source>美国小型学会期刊集(AIP Scitation平台)</source><creator>Li, Yuke ; Liu, Bing-Yu ; Chen, Yanxia ; Liu, Zhi-Feng</creator><creatorcontrib>Li, Yuke ; Liu, Bing-Yu ; Chen, Yanxia ; Liu, Zhi-Feng</creatorcontrib><description>We report the free energy barriers for the elementary reactions in the 2e− and 4e− oxygen reduction reaction (ORR) steps on Au(100) in an alkaline solution. Due to the weak adsorption energy of O2 on Au(100), the barrier for the association channel is very low, and the 2e− pathway is clearly favored, while the barrier for the O–O dissociation channel is significantly higher at 0.5 eV. Above 0.7 V reversible hydrogen electrode (RHE), the association channel becomes thermodynamically unfavorable, which opens up the O–O dissociation channel, leading to the 4e− pathway. The low adsorption energy of oxygenated species on Au is now an advantage, and residue ORR current can be observed up to the 1.0–1.2 V region (RHE). In contrast, the O–O dissociation barrier on Au(111) is significantly higher, at close to 0.9 eV, due to coupling with surface reorganization, which explains the lower ORR activity on Au(111) than that on Au(100). In combination with the previously suggested outer sphere electron transfer to O2 for its initial adsorption, these results provide a consistent explanation for the features in the experimentally measured polarization curve for the alkaline ORR on Au(100) and demonstrate an ORR mechanism distinct from that on Pt(111). It also highlights the importance to consider the spin state of O2 in ORR and to understand the activation barriers, in addition to the adsorption energies, to account for the features observed in electrochemical measurements.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0211477</identifier><identifier>PMID: 38916267</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Adsorption ; Chemical reduction ; Electron transfer ; Free energy ; Oxygen reduction reactions</subject><ispartof>The Journal of chemical physics, 2024-06, Vol.160 (24)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-94904bdf964d998bf6676137f01744a99858cf5d0d0cccb60e5b3950a039fbd63</cites><orcidid>0000-0002-6898-075X ; 0000-0002-1370-7422 ; 0000-0003-0162-5072 ; 0009-0003-0509-2784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0211477$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38916267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yuke</creatorcontrib><creatorcontrib>Liu, Bing-Yu</creatorcontrib><creatorcontrib>Chen, Yanxia</creatorcontrib><creatorcontrib>Liu, Zhi-Feng</creatorcontrib><title>From 2e− to 4e− pathway in the alkaline oxygen reduction reaction on Au(100): Kinetic circumvention of the volcano curve</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We report the free energy barriers for the elementary reactions in the 2e− and 4e− oxygen reduction reaction (ORR) steps on Au(100) in an alkaline solution. Due to the weak adsorption energy of O2 on Au(100), the barrier for the association channel is very low, and the 2e− pathway is clearly favored, while the barrier for the O–O dissociation channel is significantly higher at 0.5 eV. Above 0.7 V reversible hydrogen electrode (RHE), the association channel becomes thermodynamically unfavorable, which opens up the O–O dissociation channel, leading to the 4e− pathway. The low adsorption energy of oxygenated species on Au is now an advantage, and residue ORR current can be observed up to the 1.0–1.2 V region (RHE). In contrast, the O–O dissociation barrier on Au(111) is significantly higher, at close to 0.9 eV, due to coupling with surface reorganization, which explains the lower ORR activity on Au(111) than that on Au(100). In combination with the previously suggested outer sphere electron transfer to O2 for its initial adsorption, these results provide a consistent explanation for the features in the experimentally measured polarization curve for the alkaline ORR on Au(100) and demonstrate an ORR mechanism distinct from that on Pt(111). It also highlights the importance to consider the spin state of O2 in ORR and to understand the activation barriers, in addition to the adsorption energies, to account for the features observed in electrochemical measurements.</description><subject>Adsorption</subject><subject>Chemical reduction</subject><subject>Electron transfer</subject><subject>Free energy</subject><subject>Oxygen reduction reactions</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90c1KxDAQB_Agiq6rB19AAl5WoTpp06TxJuIXCl70XNI01WrbrEm7uuADePYRfRLT7erBgxDIMPz4k8wgtEPgkACLjuJDCAmhnK-gEYFEBJwJWEUj8O1AMGAbaNO5JwAgPKTraCNKBGEh4yP0fm5NjUP99fGJW4PpopjK9vFVznHZ4PZRY1k9y6psNDZv8wfdYKvzTrWl6Ss5FP6cdBMCsH-Mrz1tS4VVaVVXz3QziGKRNTOVko3BqrMzvYXWClk5vb28x-j-_Ozu9DK4ub24Oj25CVQESRsIKoBmeSEYzYVIsoIxzkjEC_8dSqVvxYkq4hxyUEplDHScRSIGCZEospxFYzQZcqfWvHTatWldOqWrSjbadC6NgIf9bAR4uveHPpnONv51g6Is5r3aH5Syxjmri3Rqy1raeUog7VeSxulyJd7uLhO7rNb5r_zZgQcHA3CqbGU_rH_SvgHs3ZNM</recordid><startdate>20240628</startdate><enddate>20240628</enddate><creator>Li, Yuke</creator><creator>Liu, Bing-Yu</creator><creator>Chen, Yanxia</creator><creator>Liu, Zhi-Feng</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6898-075X</orcidid><orcidid>https://orcid.org/0000-0002-1370-7422</orcidid><orcidid>https://orcid.org/0000-0003-0162-5072</orcidid><orcidid>https://orcid.org/0009-0003-0509-2784</orcidid></search><sort><creationdate>20240628</creationdate><title>From 2e− to 4e− pathway in the alkaline oxygen reduction reaction on Au(100): Kinetic circumvention of the volcano curve</title><author>Li, Yuke ; Liu, Bing-Yu ; Chen, Yanxia ; Liu, Zhi-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-94904bdf964d998bf6676137f01744a99858cf5d0d0cccb60e5b3950a039fbd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Chemical reduction</topic><topic>Electron transfer</topic><topic>Free energy</topic><topic>Oxygen reduction reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuke</creatorcontrib><creatorcontrib>Liu, Bing-Yu</creatorcontrib><creatorcontrib>Chen, Yanxia</creatorcontrib><creatorcontrib>Liu, Zhi-Feng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuke</au><au>Liu, Bing-Yu</au><au>Chen, Yanxia</au><au>Liu, Zhi-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From 2e− to 4e− pathway in the alkaline oxygen reduction reaction on Au(100): Kinetic circumvention of the volcano curve</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-06-28</date><risdate>2024</risdate><volume>160</volume><issue>24</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We report the free energy barriers for the elementary reactions in the 2e− and 4e− oxygen reduction reaction (ORR) steps on Au(100) in an alkaline solution. Due to the weak adsorption energy of O2 on Au(100), the barrier for the association channel is very low, and the 2e− pathway is clearly favored, while the barrier for the O–O dissociation channel is significantly higher at 0.5 eV. Above 0.7 V reversible hydrogen electrode (RHE), the association channel becomes thermodynamically unfavorable, which opens up the O–O dissociation channel, leading to the 4e− pathway. The low adsorption energy of oxygenated species on Au is now an advantage, and residue ORR current can be observed up to the 1.0–1.2 V region (RHE). In contrast, the O–O dissociation barrier on Au(111) is significantly higher, at close to 0.9 eV, due to coupling with surface reorganization, which explains the lower ORR activity on Au(111) than that on Au(100). In combination with the previously suggested outer sphere electron transfer to O2 for its initial adsorption, these results provide a consistent explanation for the features in the experimentally measured polarization curve for the alkaline ORR on Au(100) and demonstrate an ORR mechanism distinct from that on Pt(111). It also highlights the importance to consider the spin state of O2 in ORR and to understand the activation barriers, in addition to the adsorption energies, to account for the features observed in electrochemical measurements.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38916267</pmid><doi>10.1063/5.0211477</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6898-075X</orcidid><orcidid>https://orcid.org/0000-0002-1370-7422</orcidid><orcidid>https://orcid.org/0000-0003-0162-5072</orcidid><orcidid>https://orcid.org/0009-0003-0509-2784</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-06, Vol.160 (24)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0211477
source 美国小型学会期刊集(AIP Scitation平台)
subjects Adsorption
Chemical reduction
Electron transfer
Free energy
Oxygen reduction reactions
title From 2e− to 4e− pathway in the alkaline oxygen reduction reaction on Au(100): Kinetic circumvention of the volcano curve
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T04%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%202e%E2%88%92%20to%204e%E2%88%92%20pathway%20in%20the%20alkaline%20oxygen%20reduction%20reaction%20on%20Au(100):%20Kinetic%20circumvention%20of%20the%20volcano%20curve&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Li,%20Yuke&rft.date=2024-06-28&rft.volume=160&rft.issue=24&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0211477&rft_dat=%3Cproquest_cross%3E3072046570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072046570&rft_id=info:pmid/38916267&rfr_iscdi=true