Application of meshless generalized finite difference method (GFDM) in single-phase coupled heat and mass transfer problem in three-dimensional porous media

This paper achieves effective and precise meshless modeling of three-dimensional (3D) single-phase coupled heat and mass transfer problems based on the generalized finite difference method (GFDM). It utilizes the Taylor formula and the weighted least squares method in the node influence domains to d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-07, Vol.36 (7)
Hauptverfasser: Zhang, Qirui, Zhan, Wentao, Liu, Yuyang, Zhao, Hui, Xu, Kangning, Rao, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Zhang, Qirui
Zhan, Wentao
Liu, Yuyang
Zhao, Hui
Xu, Kangning
Rao, Xiang
description This paper achieves effective and precise meshless modeling of three-dimensional (3D) single-phase coupled heat and mass transfer problems based on the generalized finite difference method (GFDM). It utilizes the Taylor formula and the weighted least squares method in the node influence domains to derive a generalized finite difference scheme for spatial derivatives of pressure and temperature. Consequently, a sequential coupled discrete scheme for the pressure diffusion equation and heat convection–conduction equation is formulated, resulting in the determination of pressure and temperature. An example conducts sensitivity analysis with different schemes of node collocation and different radius of influence domains. The calculation results demonstrate that this method exhibits good convergence. Two 3D model examples with regular and irregular boundaries illustrate the advantages of the GFDM in handling complex geometric problems within the computational domain, showcasing its superior flexibility and simplicity. This paper demonstrates the significant potential of GFDM in addressing complex geometric multi-physics field coupling challenges, offering innovative ideas for geothermal resource development, groundwater management, and thermal recovery in oil and gas reservoirs.
doi_str_mv 10.1063/5.0211014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0211014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075426189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-5c2474d18418a4e24c9de28f325dfd1791799d96c999d8bf524738b84e9937b33</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYsoqKsH_0HAiytUk6ZNk6Os7iooXvRcssnERtqkJtmD_hZ_rFnXszAwc_jem8crijOCrwhm9Lq5whUhmNR7xRHBXJQtY2x_e7e4ZIySw-I4xneMMRUVOyq-b6ZpsEom6x3yBo0Q-wFiRG_gIMjBfoFGxjqbAGlrDARwCjKWeq_RxWp5-zRH1qFo3dsA5dTLCEj5zTRkXQ8yIek0GmV2TEG6mA3QFPx6gHErS30AKLUdwcWcQA5o8sFvYn6grTwpDowcIpz-7Vnxurx7WdyXj8-rh8XNY6kIr1LZqKpua014TbisoaqV0FBxQ6tGG01akUdowZTIi69Nk3HK17wGIWi7pnRWnO98c7KPDcTUvftNyGliR3Hb1BUjXGRqvqNU8DEGMN0U7CjDZ0dwty2_a7q_8jN7uWOjsum33H_gH1m6hVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075426189</pqid></control><display><type>article</type><title>Application of meshless generalized finite difference method (GFDM) in single-phase coupled heat and mass transfer problem in three-dimensional porous media</title><source>AIP Journals Complete</source><creator>Zhang, Qirui ; Zhan, Wentao ; Liu, Yuyang ; Zhao, Hui ; Xu, Kangning ; Rao, Xiang</creator><creatorcontrib>Zhang, Qirui ; Zhan, Wentao ; Liu, Yuyang ; Zhao, Hui ; Xu, Kangning ; Rao, Xiang</creatorcontrib><description>This paper achieves effective and precise meshless modeling of three-dimensional (3D) single-phase coupled heat and mass transfer problems based on the generalized finite difference method (GFDM). It utilizes the Taylor formula and the weighted least squares method in the node influence domains to derive a generalized finite difference scheme for spatial derivatives of pressure and temperature. Consequently, a sequential coupled discrete scheme for the pressure diffusion equation and heat convection–conduction equation is formulated, resulting in the determination of pressure and temperature. An example conducts sensitivity analysis with different schemes of node collocation and different radius of influence domains. The calculation results demonstrate that this method exhibits good convergence. Two 3D model examples with regular and irregular boundaries illustrate the advantages of the GFDM in handling complex geometric problems within the computational domain, showcasing its superior flexibility and simplicity. This paper demonstrates the significant potential of GFDM in addressing complex geometric multi-physics field coupling challenges, offering innovative ideas for geothermal resource development, groundwater management, and thermal recovery in oil and gas reservoirs.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0211014</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Conduction heating ; Effectiveness ; Finite difference method ; Geothermal resources ; Groundwater management ; Heat ; Heat transfer ; Least squares method ; Mass transfer ; Mathematical analysis ; Meshless methods ; Porous media ; Sensitivity analysis ; Three dimensional models</subject><ispartof>Physics of fluids (1994), 2024-07, Vol.36 (7)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-5c2474d18418a4e24c9de28f325dfd1791799d96c999d8bf524738b84e9937b33</cites><orcidid>0000-0002-2802-7753 ; 0009-0002-3343-5943 ; 0000-0002-2615-7642 ; 0000-0002-1856-1581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Qirui</creatorcontrib><creatorcontrib>Zhan, Wentao</creatorcontrib><creatorcontrib>Liu, Yuyang</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Xu, Kangning</creatorcontrib><creatorcontrib>Rao, Xiang</creatorcontrib><title>Application of meshless generalized finite difference method (GFDM) in single-phase coupled heat and mass transfer problem in three-dimensional porous media</title><title>Physics of fluids (1994)</title><description>This paper achieves effective and precise meshless modeling of three-dimensional (3D) single-phase coupled heat and mass transfer problems based on the generalized finite difference method (GFDM). It utilizes the Taylor formula and the weighted least squares method in the node influence domains to derive a generalized finite difference scheme for spatial derivatives of pressure and temperature. Consequently, a sequential coupled discrete scheme for the pressure diffusion equation and heat convection–conduction equation is formulated, resulting in the determination of pressure and temperature. An example conducts sensitivity analysis with different schemes of node collocation and different radius of influence domains. The calculation results demonstrate that this method exhibits good convergence. Two 3D model examples with regular and irregular boundaries illustrate the advantages of the GFDM in handling complex geometric problems within the computational domain, showcasing its superior flexibility and simplicity. This paper demonstrates the significant potential of GFDM in addressing complex geometric multi-physics field coupling challenges, offering innovative ideas for geothermal resource development, groundwater management, and thermal recovery in oil and gas reservoirs.</description><subject>Conduction heating</subject><subject>Effectiveness</subject><subject>Finite difference method</subject><subject>Geothermal resources</subject><subject>Groundwater management</subject><subject>Heat</subject><subject>Heat transfer</subject><subject>Least squares method</subject><subject>Mass transfer</subject><subject>Mathematical analysis</subject><subject>Meshless methods</subject><subject>Porous media</subject><subject>Sensitivity analysis</subject><subject>Three dimensional models</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYsoqKsH_0HAiytUk6ZNk6Os7iooXvRcssnERtqkJtmD_hZ_rFnXszAwc_jem8crijOCrwhm9Lq5whUhmNR7xRHBXJQtY2x_e7e4ZIySw-I4xneMMRUVOyq-b6ZpsEom6x3yBo0Q-wFiRG_gIMjBfoFGxjqbAGlrDARwCjKWeq_RxWp5-zRH1qFo3dsA5dTLCEj5zTRkXQ8yIek0GmV2TEG6mA3QFPx6gHErS30AKLUdwcWcQA5o8sFvYn6grTwpDowcIpz-7Vnxurx7WdyXj8-rh8XNY6kIr1LZqKpua014TbisoaqV0FBxQ6tGG01akUdowZTIi69Nk3HK17wGIWi7pnRWnO98c7KPDcTUvftNyGliR3Hb1BUjXGRqvqNU8DEGMN0U7CjDZ0dwty2_a7q_8jN7uWOjsum33H_gH1m6hVE</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Zhang, Qirui</creator><creator>Zhan, Wentao</creator><creator>Liu, Yuyang</creator><creator>Zhao, Hui</creator><creator>Xu, Kangning</creator><creator>Rao, Xiang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2802-7753</orcidid><orcidid>https://orcid.org/0009-0002-3343-5943</orcidid><orcidid>https://orcid.org/0000-0002-2615-7642</orcidid><orcidid>https://orcid.org/0000-0002-1856-1581</orcidid></search><sort><creationdate>202407</creationdate><title>Application of meshless generalized finite difference method (GFDM) in single-phase coupled heat and mass transfer problem in three-dimensional porous media</title><author>Zhang, Qirui ; Zhan, Wentao ; Liu, Yuyang ; Zhao, Hui ; Xu, Kangning ; Rao, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-5c2474d18418a4e24c9de28f325dfd1791799d96c999d8bf524738b84e9937b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Conduction heating</topic><topic>Effectiveness</topic><topic>Finite difference method</topic><topic>Geothermal resources</topic><topic>Groundwater management</topic><topic>Heat</topic><topic>Heat transfer</topic><topic>Least squares method</topic><topic>Mass transfer</topic><topic>Mathematical analysis</topic><topic>Meshless methods</topic><topic>Porous media</topic><topic>Sensitivity analysis</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qirui</creatorcontrib><creatorcontrib>Zhan, Wentao</creatorcontrib><creatorcontrib>Liu, Yuyang</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Xu, Kangning</creatorcontrib><creatorcontrib>Rao, Xiang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qirui</au><au>Zhan, Wentao</au><au>Liu, Yuyang</au><au>Zhao, Hui</au><au>Xu, Kangning</au><au>Rao, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of meshless generalized finite difference method (GFDM) in single-phase coupled heat and mass transfer problem in three-dimensional porous media</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-07</date><risdate>2024</risdate><volume>36</volume><issue>7</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This paper achieves effective and precise meshless modeling of three-dimensional (3D) single-phase coupled heat and mass transfer problems based on the generalized finite difference method (GFDM). It utilizes the Taylor formula and the weighted least squares method in the node influence domains to derive a generalized finite difference scheme for spatial derivatives of pressure and temperature. Consequently, a sequential coupled discrete scheme for the pressure diffusion equation and heat convection–conduction equation is formulated, resulting in the determination of pressure and temperature. An example conducts sensitivity analysis with different schemes of node collocation and different radius of influence domains. The calculation results demonstrate that this method exhibits good convergence. Two 3D model examples with regular and irregular boundaries illustrate the advantages of the GFDM in handling complex geometric problems within the computational domain, showcasing its superior flexibility and simplicity. This paper demonstrates the significant potential of GFDM in addressing complex geometric multi-physics field coupling challenges, offering innovative ideas for geothermal resource development, groundwater management, and thermal recovery in oil and gas reservoirs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0211014</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2802-7753</orcidid><orcidid>https://orcid.org/0009-0002-3343-5943</orcidid><orcidid>https://orcid.org/0000-0002-2615-7642</orcidid><orcidid>https://orcid.org/0000-0002-1856-1581</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-07, Vol.36 (7)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0211014
source AIP Journals Complete
subjects Conduction heating
Effectiveness
Finite difference method
Geothermal resources
Groundwater management
Heat
Heat transfer
Least squares method
Mass transfer
Mathematical analysis
Meshless methods
Porous media
Sensitivity analysis
Three dimensional models
title Application of meshless generalized finite difference method (GFDM) in single-phase coupled heat and mass transfer problem in three-dimensional porous media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20meshless%20generalized%20finite%20difference%20method%20(GFDM)%20in%20single-phase%20coupled%20heat%20and%20mass%20transfer%20problem%20in%20three-dimensional%20porous%20media&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Zhang,%20Qirui&rft.date=2024-07&rft.volume=36&rft.issue=7&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0211014&rft_dat=%3Cproquest_cross%3E3075426189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075426189&rft_id=info:pmid/&rfr_iscdi=true