Growing simplicial complex with face dimension selection and preferential attachment

When simplicial complexes are used to represent higher-order systems, information regarding when and how interactions happen may be lost. In this paper, we propose the concept of temporal simplicial complexes, in which simplices with timestamps (or temporal simplices) are used to represent interacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2024-10, Vol.34 (10)
Hauptverfasser: Ding, Mengjun, Yu, Jia, Sun, Weiqiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Chaos (Woodbury, N.Y.)
container_volume 34
creator Ding, Mengjun
Yu, Jia
Sun, Weiqiang
description When simplicial complexes are used to represent higher-order systems, information regarding when and how interactions happen may be lost. In this paper, we propose the concept of temporal simplicial complexes, in which simplices with timestamps (or temporal simplices) are used to represent interactions, and faces with weights are used to represent relations. Then, we propose a growing model with two rules, face dimension selection (FDS), and preferential attachment. By properly setting the probability parameter vector q in the FDS rule, one can balance network diameter expansion and network centrality, thus attaining more flexibility in the growing process. Our theoretical analysis and simulations that followed show the generalized degree of faces of any dimension follows a power-law distribution, with a scaling component controlled by q. Our work provides a flexible growing model and can be used to study higher-order systems with temporal properties.
doi_str_mv 10.1063/5.0210960
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0210960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111703726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-5b1593388dc59139bc9c450db987067e107d4dc05b49674040425fe1163d5cfd3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqUw8AdQJCaQUu7iOIlHVEFBqsRS5sixHeoqX9iuCv8eRy2M6Aa_w-P3Tg8h1whzhIw-sDkkCDyDEzJFKHicZ0VyOmaWxsgAJuTCuS0AYELZOZlQTlmCvJiS9dL2e9N9RM60Q2OkEU0k-xD1V7Q3fhPVQupImVZ3zvRd5HSjpR-T6FQ0WF1rqzs_fhPeC7kJoL8kZ7VonL46vjPy_vy0XrzEq7fl6-JxFcsEmI9ZhYxTWhRKMo6UV5LLlIGqeJFDlmuEXKVKAqtSnuUphElYrREzqpisFZ2R20PvYPvPnXa-3PY724WVJUXEHGieZIG6O1DS9s6Fi8vBmlbY7xKhHP2VrDz6C-zNsXFXtVr9kb_CAnB_AJw0Xowi_mn7AcjyduQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111703726</pqid></control><display><type>article</type><title>Growing simplicial complex with face dimension selection and preferential attachment</title><source>AIP Journals Complete</source><creator>Ding, Mengjun ; Yu, Jia ; Sun, Weiqiang</creator><creatorcontrib>Ding, Mengjun ; Yu, Jia ; Sun, Weiqiang</creatorcontrib><description>When simplicial complexes are used to represent higher-order systems, information regarding when and how interactions happen may be lost. In this paper, we propose the concept of temporal simplicial complexes, in which simplices with timestamps (or temporal simplices) are used to represent interactions, and faces with weights are used to represent relations. Then, we propose a growing model with two rules, face dimension selection (FDS), and preferential attachment. By properly setting the probability parameter vector q in the FDS rule, one can balance network diameter expansion and network centrality, thus attaining more flexibility in the growing process. Our theoretical analysis and simulations that followed show the generalized degree of faces of any dimension follows a power-law distribution, with a scaling component controlled by q. Our work provides a flexible growing model and can be used to study higher-order systems with temporal properties.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0210960</identifier><identifier>PMID: 39352198</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>Chaos (Woodbury, N.Y.), 2024-10, Vol.34 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c205t-5b1593388dc59139bc9c450db987067e107d4dc05b49674040425fe1163d5cfd3</cites><orcidid>0000-0003-4191-1129 ; 0000-0002-8611-0758 ; 0000-0002-4641-4829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39352198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Mengjun</creatorcontrib><creatorcontrib>Yu, Jia</creatorcontrib><creatorcontrib>Sun, Weiqiang</creatorcontrib><title>Growing simplicial complex with face dimension selection and preferential attachment</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>When simplicial complexes are used to represent higher-order systems, information regarding when and how interactions happen may be lost. In this paper, we propose the concept of temporal simplicial complexes, in which simplices with timestamps (or temporal simplices) are used to represent interactions, and faces with weights are used to represent relations. Then, we propose a growing model with two rules, face dimension selection (FDS), and preferential attachment. By properly setting the probability parameter vector q in the FDS rule, one can balance network diameter expansion and network centrality, thus attaining more flexibility in the growing process. Our theoretical analysis and simulations that followed show the generalized degree of faces of any dimension follows a power-law distribution, with a scaling component controlled by q. Our work provides a flexible growing model and can be used to study higher-order systems with temporal properties.</description><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqUw8AdQJCaQUu7iOIlHVEFBqsRS5sixHeoqX9iuCv8eRy2M6Aa_w-P3Tg8h1whzhIw-sDkkCDyDEzJFKHicZ0VyOmaWxsgAJuTCuS0AYELZOZlQTlmCvJiS9dL2e9N9RM60Q2OkEU0k-xD1V7Q3fhPVQupImVZ3zvRd5HSjpR-T6FQ0WF1rqzs_fhPeC7kJoL8kZ7VonL46vjPy_vy0XrzEq7fl6-JxFcsEmI9ZhYxTWhRKMo6UV5LLlIGqeJFDlmuEXKVKAqtSnuUphElYrREzqpisFZ2R20PvYPvPnXa-3PY724WVJUXEHGieZIG6O1DS9s6Fi8vBmlbY7xKhHP2VrDz6C-zNsXFXtVr9kb_CAnB_AJw0Xowi_mn7AcjyduQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Ding, Mengjun</creator><creator>Yu, Jia</creator><creator>Sun, Weiqiang</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4191-1129</orcidid><orcidid>https://orcid.org/0000-0002-8611-0758</orcidid><orcidid>https://orcid.org/0000-0002-4641-4829</orcidid></search><sort><creationdate>202410</creationdate><title>Growing simplicial complex with face dimension selection and preferential attachment</title><author>Ding, Mengjun ; Yu, Jia ; Sun, Weiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-5b1593388dc59139bc9c450db987067e107d4dc05b49674040425fe1163d5cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Mengjun</creatorcontrib><creatorcontrib>Yu, Jia</creatorcontrib><creatorcontrib>Sun, Weiqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Mengjun</au><au>Yu, Jia</au><au>Sun, Weiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growing simplicial complex with face dimension selection and preferential attachment</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2024-10</date><risdate>2024</risdate><volume>34</volume><issue>10</issue><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>When simplicial complexes are used to represent higher-order systems, information regarding when and how interactions happen may be lost. In this paper, we propose the concept of temporal simplicial complexes, in which simplices with timestamps (or temporal simplices) are used to represent interactions, and faces with weights are used to represent relations. Then, we propose a growing model with two rules, face dimension selection (FDS), and preferential attachment. By properly setting the probability parameter vector q in the FDS rule, one can balance network diameter expansion and network centrality, thus attaining more flexibility in the growing process. Our theoretical analysis and simulations that followed show the generalized degree of faces of any dimension follows a power-law distribution, with a scaling component controlled by q. Our work provides a flexible growing model and can be used to study higher-order systems with temporal properties.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39352198</pmid><doi>10.1063/5.0210960</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4191-1129</orcidid><orcidid>https://orcid.org/0000-0002-8611-0758</orcidid><orcidid>https://orcid.org/0000-0002-4641-4829</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2024-10, Vol.34 (10)
issn 1054-1500
1089-7682
language eng
recordid cdi_crossref_primary_10_1063_5_0210960
source AIP Journals Complete
title Growing simplicial complex with face dimension selection and preferential attachment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growing%20simplicial%20complex%20with%20face%20dimension%20selection%20and%20preferential%20attachment&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Ding,%20Mengjun&rft.date=2024-10&rft.volume=34&rft.issue=10&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0210960&rft_dat=%3Cproquest_cross%3E3111703726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111703726&rft_id=info:pmid/39352198&rfr_iscdi=true