A size-consistent multi-state mapping approach to surface hopping
We develop a multi-state generalization of the recently proposed mapping approach to surface hopping (MASH) for the simulation of electronically nonadiabatic dynamics. This new approach extends the original MASH method to be able to treat systems with more than two electronic states. It differs from...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2024-06, Vol.160 (24) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 160 |
creator | Lawrence, Joseph E. Mannouch, Jonathan R. Richardson, Jeremy O. |
description | We develop a multi-state generalization of the recently proposed mapping approach to surface hopping (MASH) for the simulation of electronically nonadiabatic dynamics. This new approach extends the original MASH method to be able to treat systems with more than two electronic states. It differs from previous approaches in that it is size consistent and rigorously recovers the original two-state MASH in the appropriate limits. We demonstrate the accuracy of the method by applying it to a series of model systems for which exact benchmark results are available, and we find that the method is well suited to the simulation of photochemical relaxation processes. |
doi_str_mv | 10.1063/5.0208575 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0208575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073332328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-c3e056acff1fea1b7ef35a1490f470a155b7e700eae322a3aabb4ba8e80804773</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgitbqwT8gC15U2DpJNpvssRS_oOBFz8tsTGxKd1M32YP-emNbPXjwNDDz8DK8hJxRmFAo-Y2YAAMlpNgjIwqqymVZwT4ZATCaVyWUR-Q4hCUAUMmKQ3LEVVWAKGBEptMsuE-Ta98FF6LpYtYOq-jyEDGarMX12nVvWRq9R73Ios_C0FvUJlv4ze2EHFhcBXO6m2Pycnf7PHvI50_3j7PpPNeMq5hrbkCUqK2l1iBtpLFcIC0qsIUEpEKklQQwaDhjyBGbpmhQGQUKCin5mFxuc9Mn74MJsW5d0Ga1ws74IdQcJGdcQFUlevGHLv3Qd-m7jeLJMZXU1Vbp3ofQG1uve9di_1FTqL97rUW96zXZ813i0LTm9Vf-FJnA9RYE7VJzznf_pH0B52V-pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073332328</pqid></control><display><type>article</type><title>A size-consistent multi-state mapping approach to surface hopping</title><source>AIP Journals Complete</source><creator>Lawrence, Joseph E. ; Mannouch, Jonathan R. ; Richardson, Jeremy O.</creator><creatorcontrib>Lawrence, Joseph E. ; Mannouch, Jonathan R. ; Richardson, Jeremy O.</creatorcontrib><description>We develop a multi-state generalization of the recently proposed mapping approach to surface hopping (MASH) for the simulation of electronically nonadiabatic dynamics. This new approach extends the original MASH method to be able to treat systems with more than two electronic states. It differs from previous approaches in that it is size consistent and rigorously recovers the original two-state MASH in the appropriate limits. We demonstrate the accuracy of the method by applying it to a series of model systems for which exact benchmark results are available, and we find that the method is well suited to the simulation of photochemical relaxation processes.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0208575</identifier><identifier>PMID: 38940540</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Electron states ; Mapping</subject><ispartof>The Journal of chemical physics, 2024-06, Vol.160 (24)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-c3e056acff1fea1b7ef35a1490f470a155b7e700eae322a3aabb4ba8e80804773</cites><orcidid>0000-0001-6546-2925 ; 0000-0003-3090-8987 ; 0000-0002-9429-151X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0208575$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38940540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawrence, Joseph E.</creatorcontrib><creatorcontrib>Mannouch, Jonathan R.</creatorcontrib><creatorcontrib>Richardson, Jeremy O.</creatorcontrib><title>A size-consistent multi-state mapping approach to surface hopping</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We develop a multi-state generalization of the recently proposed mapping approach to surface hopping (MASH) for the simulation of electronically nonadiabatic dynamics. This new approach extends the original MASH method to be able to treat systems with more than two electronic states. It differs from previous approaches in that it is size consistent and rigorously recovers the original two-state MASH in the appropriate limits. We demonstrate the accuracy of the method by applying it to a series of model systems for which exact benchmark results are available, and we find that the method is well suited to the simulation of photochemical relaxation processes.</description><subject>Electron states</subject><subject>Mapping</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgitbqwT8gC15U2DpJNpvssRS_oOBFz8tsTGxKd1M32YP-emNbPXjwNDDz8DK8hJxRmFAo-Y2YAAMlpNgjIwqqymVZwT4ZATCaVyWUR-Q4hCUAUMmKQ3LEVVWAKGBEptMsuE-Ta98FF6LpYtYOq-jyEDGarMX12nVvWRq9R73Ios_C0FvUJlv4ze2EHFhcBXO6m2Pycnf7PHvI50_3j7PpPNeMq5hrbkCUqK2l1iBtpLFcIC0qsIUEpEKklQQwaDhjyBGbpmhQGQUKCin5mFxuc9Mn74MJsW5d0Ga1ws74IdQcJGdcQFUlevGHLv3Qd-m7jeLJMZXU1Vbp3ofQG1uve9di_1FTqL97rUW96zXZ813i0LTm9Vf-FJnA9RYE7VJzznf_pH0B52V-pw</recordid><startdate>20240628</startdate><enddate>20240628</enddate><creator>Lawrence, Joseph E.</creator><creator>Mannouch, Jonathan R.</creator><creator>Richardson, Jeremy O.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6546-2925</orcidid><orcidid>https://orcid.org/0000-0003-3090-8987</orcidid><orcidid>https://orcid.org/0000-0002-9429-151X</orcidid></search><sort><creationdate>20240628</creationdate><title>A size-consistent multi-state mapping approach to surface hopping</title><author>Lawrence, Joseph E. ; Mannouch, Jonathan R. ; Richardson, Jeremy O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-c3e056acff1fea1b7ef35a1490f470a155b7e700eae322a3aabb4ba8e80804773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electron states</topic><topic>Mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawrence, Joseph E.</creatorcontrib><creatorcontrib>Mannouch, Jonathan R.</creatorcontrib><creatorcontrib>Richardson, Jeremy O.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawrence, Joseph E.</au><au>Mannouch, Jonathan R.</au><au>Richardson, Jeremy O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A size-consistent multi-state mapping approach to surface hopping</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-06-28</date><risdate>2024</risdate><volume>160</volume><issue>24</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We develop a multi-state generalization of the recently proposed mapping approach to surface hopping (MASH) for the simulation of electronically nonadiabatic dynamics. This new approach extends the original MASH method to be able to treat systems with more than two electronic states. It differs from previous approaches in that it is size consistent and rigorously recovers the original two-state MASH in the appropriate limits. We demonstrate the accuracy of the method by applying it to a series of model systems for which exact benchmark results are available, and we find that the method is well suited to the simulation of photochemical relaxation processes.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38940540</pmid><doi>10.1063/5.0208575</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6546-2925</orcidid><orcidid>https://orcid.org/0000-0003-3090-8987</orcidid><orcidid>https://orcid.org/0000-0002-9429-151X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-06, Vol.160 (24) |
issn | 0021-9606 1089-7690 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0208575 |
source | AIP Journals Complete |
subjects | Electron states Mapping |
title | A size-consistent multi-state mapping approach to surface hopping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20size-consistent%20multi-state%20mapping%20approach%20to%20surface%20hopping&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Lawrence,%20Joseph%20E.&rft.date=2024-06-28&rft.volume=160&rft.issue=24&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0208575&rft_dat=%3Cproquest_cross%3E3073332328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073332328&rft_id=info:pmid/38940540&rfr_iscdi=true |