A size-consistent multi-state mapping approach to surface hopping

We develop a multi-state generalization of the recently proposed mapping approach to surface hopping (MASH) for the simulation of electronically nonadiabatic dynamics. This new approach extends the original MASH method to be able to treat systems with more than two electronic states. It differs from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-06, Vol.160 (24)
Hauptverfasser: Lawrence, Joseph E., Mannouch, Jonathan R., Richardson, Jeremy O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title The Journal of chemical physics
container_volume 160
creator Lawrence, Joseph E.
Mannouch, Jonathan R.
Richardson, Jeremy O.
description We develop a multi-state generalization of the recently proposed mapping approach to surface hopping (MASH) for the simulation of electronically nonadiabatic dynamics. This new approach extends the original MASH method to be able to treat systems with more than two electronic states. It differs from previous approaches in that it is size consistent and rigorously recovers the original two-state MASH in the appropriate limits. We demonstrate the accuracy of the method by applying it to a series of model systems for which exact benchmark results are available, and we find that the method is well suited to the simulation of photochemical relaxation processes.
doi_str_mv 10.1063/5.0208575
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0208575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073332328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-c3e056acff1fea1b7ef35a1490f470a155b7e700eae322a3aabb4ba8e80804773</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgitbqwT8gC15U2DpJNpvssRS_oOBFz8tsTGxKd1M32YP-emNbPXjwNDDz8DK8hJxRmFAo-Y2YAAMlpNgjIwqqymVZwT4ZATCaVyWUR-Q4hCUAUMmKQ3LEVVWAKGBEptMsuE-Ta98FF6LpYtYOq-jyEDGarMX12nVvWRq9R73Ios_C0FvUJlv4ze2EHFhcBXO6m2Pycnf7PHvI50_3j7PpPNeMq5hrbkCUqK2l1iBtpLFcIC0qsIUEpEKklQQwaDhjyBGbpmhQGQUKCin5mFxuc9Mn74MJsW5d0Ga1ws74IdQcJGdcQFUlevGHLv3Qd-m7jeLJMZXU1Vbp3ofQG1uve9di_1FTqL97rUW96zXZ813i0LTm9Vf-FJnA9RYE7VJzznf_pH0B52V-pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073332328</pqid></control><display><type>article</type><title>A size-consistent multi-state mapping approach to surface hopping</title><source>AIP Journals Complete</source><creator>Lawrence, Joseph E. ; Mannouch, Jonathan R. ; Richardson, Jeremy O.</creator><creatorcontrib>Lawrence, Joseph E. ; Mannouch, Jonathan R. ; Richardson, Jeremy O.</creatorcontrib><description>We develop a multi-state generalization of the recently proposed mapping approach to surface hopping (MASH) for the simulation of electronically nonadiabatic dynamics. This new approach extends the original MASH method to be able to treat systems with more than two electronic states. It differs from previous approaches in that it is size consistent and rigorously recovers the original two-state MASH in the appropriate limits. We demonstrate the accuracy of the method by applying it to a series of model systems for which exact benchmark results are available, and we find that the method is well suited to the simulation of photochemical relaxation processes.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0208575</identifier><identifier>PMID: 38940540</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Electron states ; Mapping</subject><ispartof>The Journal of chemical physics, 2024-06, Vol.160 (24)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-c3e056acff1fea1b7ef35a1490f470a155b7e700eae322a3aabb4ba8e80804773</cites><orcidid>0000-0001-6546-2925 ; 0000-0003-3090-8987 ; 0000-0002-9429-151X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0208575$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38940540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawrence, Joseph E.</creatorcontrib><creatorcontrib>Mannouch, Jonathan R.</creatorcontrib><creatorcontrib>Richardson, Jeremy O.</creatorcontrib><title>A size-consistent multi-state mapping approach to surface hopping</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We develop a multi-state generalization of the recently proposed mapping approach to surface hopping (MASH) for the simulation of electronically nonadiabatic dynamics. This new approach extends the original MASH method to be able to treat systems with more than two electronic states. It differs from previous approaches in that it is size consistent and rigorously recovers the original two-state MASH in the appropriate limits. We demonstrate the accuracy of the method by applying it to a series of model systems for which exact benchmark results are available, and we find that the method is well suited to the simulation of photochemical relaxation processes.</description><subject>Electron states</subject><subject>Mapping</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgitbqwT8gC15U2DpJNpvssRS_oOBFz8tsTGxKd1M32YP-emNbPXjwNDDz8DK8hJxRmFAo-Y2YAAMlpNgjIwqqymVZwT4ZATCaVyWUR-Q4hCUAUMmKQ3LEVVWAKGBEptMsuE-Ta98FF6LpYtYOq-jyEDGarMX12nVvWRq9R73Ios_C0FvUJlv4ze2EHFhcBXO6m2Pycnf7PHvI50_3j7PpPNeMq5hrbkCUqK2l1iBtpLFcIC0qsIUEpEKklQQwaDhjyBGbpmhQGQUKCin5mFxuc9Mn74MJsW5d0Ga1ws74IdQcJGdcQFUlevGHLv3Qd-m7jeLJMZXU1Vbp3ofQG1uve9di_1FTqL97rUW96zXZ813i0LTm9Vf-FJnA9RYE7VJzznf_pH0B52V-pw</recordid><startdate>20240628</startdate><enddate>20240628</enddate><creator>Lawrence, Joseph E.</creator><creator>Mannouch, Jonathan R.</creator><creator>Richardson, Jeremy O.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6546-2925</orcidid><orcidid>https://orcid.org/0000-0003-3090-8987</orcidid><orcidid>https://orcid.org/0000-0002-9429-151X</orcidid></search><sort><creationdate>20240628</creationdate><title>A size-consistent multi-state mapping approach to surface hopping</title><author>Lawrence, Joseph E. ; Mannouch, Jonathan R. ; Richardson, Jeremy O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-c3e056acff1fea1b7ef35a1490f470a155b7e700eae322a3aabb4ba8e80804773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electron states</topic><topic>Mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawrence, Joseph E.</creatorcontrib><creatorcontrib>Mannouch, Jonathan R.</creatorcontrib><creatorcontrib>Richardson, Jeremy O.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawrence, Joseph E.</au><au>Mannouch, Jonathan R.</au><au>Richardson, Jeremy O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A size-consistent multi-state mapping approach to surface hopping</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-06-28</date><risdate>2024</risdate><volume>160</volume><issue>24</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We develop a multi-state generalization of the recently proposed mapping approach to surface hopping (MASH) for the simulation of electronically nonadiabatic dynamics. This new approach extends the original MASH method to be able to treat systems with more than two electronic states. It differs from previous approaches in that it is size consistent and rigorously recovers the original two-state MASH in the appropriate limits. We demonstrate the accuracy of the method by applying it to a series of model systems for which exact benchmark results are available, and we find that the method is well suited to the simulation of photochemical relaxation processes.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38940540</pmid><doi>10.1063/5.0208575</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6546-2925</orcidid><orcidid>https://orcid.org/0000-0003-3090-8987</orcidid><orcidid>https://orcid.org/0000-0002-9429-151X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-06, Vol.160 (24)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0208575
source AIP Journals Complete
subjects Electron states
Mapping
title A size-consistent multi-state mapping approach to surface hopping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20size-consistent%20multi-state%20mapping%20approach%20to%20surface%20hopping&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Lawrence,%20Joseph%20E.&rft.date=2024-06-28&rft.volume=160&rft.issue=24&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0208575&rft_dat=%3Cproquest_cross%3E3073332328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073332328&rft_id=info:pmid/38940540&rfr_iscdi=true