Uncertainty analysis of the plasma impedance probe

A plasma impedance probe (PIP) is a type of in situ, radio frequency (RF) probe that is traditionally used to measure plasma properties (e.g., density) in low-density environments such as the Earth's ionosphere. We believe that PIPs are underrepresented in laboratory settings, in part because P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2024-05, Vol.31 (5)
Hauptverfasser: Brooks, J. W., Paliwoda, M. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physics of plasmas
container_volume 31
creator Brooks, J. W.
Paliwoda, M. C.
description A plasma impedance probe (PIP) is a type of in situ, radio frequency (RF) probe that is traditionally used to measure plasma properties (e.g., density) in low-density environments such as the Earth's ionosphere. We believe that PIPs are underrepresented in laboratory settings, in part because PIP operation and analysis have not been optimized for signal-to-noise ratio (SNR), reducing the probe's accuracy, upper density limit, and acquisition rate. This work presents our efforts in streamlining and simplifying the PIP design, circuit-based-model, calibration, and analysis for unmagnetized laboratory plasmas, in both continuous and pulsed PIP operation. The focus of this work is a Monte Carlo uncertainty analysis, which identifies operational and analysis procedures that improve SNR by multiple orders of magnitude. Additionally, this analysis provides evidence that the sheath resonance (and not the plasma frequency as previously believed) sets the PIP's upper density limit, which likely provides an additional method for extending the PIP's density limit.
doi_str_mv 10.1063/5.0203675
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0203675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056021172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-c23c7241442b50085e75d1cf4c05cd8baab912b4aae6b17d9bcadfd980ab9b933</originalsourceid><addsrcrecordid>eNp90EtLAzEQAOAgCtbqwX-w4Elh6ySbx-5RilWh4MWCtzDJZnHLvkzSw_57U9qzl5mB-ZgZhpB7CisKsngWK2BQSCUuyIJCWeVKKn55rBXkUvLva3ITwh4AuBTlgrDdYJ2P2A5xznDAbg5tyMYmiz8umzoMPWZtP7kak8smPxp3S64a7IK7O-cl2W1ev9bv-fbz7WP9ss0tK1VMsbCKcco5MwKgFE6JmtqGWxC2Lg2iqSgzHNFJQ1VdGYt1U1clpIapimJJHk5z09bfgwtR78eDTycGXYCQwChVLKnHk7J-DMG7Rk--7dHPmoI-vkQLfX5Jsk8nG2wbMbbj8A_-A_XWX_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056021172</pqid></control><display><type>article</type><title>Uncertainty analysis of the plasma impedance probe</title><source>Alma/SFX Local Collection</source><creator>Brooks, J. W. ; Paliwoda, M. C.</creator><creatorcontrib>Brooks, J. W. ; Paliwoda, M. C.</creatorcontrib><description>A plasma impedance probe (PIP) is a type of in situ, radio frequency (RF) probe that is traditionally used to measure plasma properties (e.g., density) in low-density environments such as the Earth's ionosphere. We believe that PIPs are underrepresented in laboratory settings, in part because PIP operation and analysis have not been optimized for signal-to-noise ratio (SNR), reducing the probe's accuracy, upper density limit, and acquisition rate. This work presents our efforts in streamlining and simplifying the PIP design, circuit-based-model, calibration, and analysis for unmagnetized laboratory plasmas, in both continuous and pulsed PIP operation. The focus of this work is a Monte Carlo uncertainty analysis, which identifies operational and analysis procedures that improve SNR by multiple orders of magnitude. Additionally, this analysis provides evidence that the sheath resonance (and not the plasma frequency as previously believed) sets the PIP's upper density limit, which likely provides an additional method for extending the PIP's density limit.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0203675</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Circuit design ; Density ; Earth ionosphere ; Impedance probes ; Plasma ; Plasma frequencies ; Sheaths ; Signal to noise ratio ; Uncertainty analysis</subject><ispartof>Physics of plasmas, 2024-05, Vol.31 (5)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-c23c7241442b50085e75d1cf4c05cd8baab912b4aae6b17d9bcadfd980ab9b933</cites><orcidid>0000-0002-4448-6351 ; 0000-0001-8301-9548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Brooks, J. W.</creatorcontrib><creatorcontrib>Paliwoda, M. C.</creatorcontrib><title>Uncertainty analysis of the plasma impedance probe</title><title>Physics of plasmas</title><description>A plasma impedance probe (PIP) is a type of in situ, radio frequency (RF) probe that is traditionally used to measure plasma properties (e.g., density) in low-density environments such as the Earth's ionosphere. We believe that PIPs are underrepresented in laboratory settings, in part because PIP operation and analysis have not been optimized for signal-to-noise ratio (SNR), reducing the probe's accuracy, upper density limit, and acquisition rate. This work presents our efforts in streamlining and simplifying the PIP design, circuit-based-model, calibration, and analysis for unmagnetized laboratory plasmas, in both continuous and pulsed PIP operation. The focus of this work is a Monte Carlo uncertainty analysis, which identifies operational and analysis procedures that improve SNR by multiple orders of magnitude. Additionally, this analysis provides evidence that the sheath resonance (and not the plasma frequency as previously believed) sets the PIP's upper density limit, which likely provides an additional method for extending the PIP's density limit.</description><subject>Circuit design</subject><subject>Density</subject><subject>Earth ionosphere</subject><subject>Impedance probes</subject><subject>Plasma</subject><subject>Plasma frequencies</subject><subject>Sheaths</subject><subject>Signal to noise ratio</subject><subject>Uncertainty analysis</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEQAOAgCtbqwX-w4Elh6ySbx-5RilWh4MWCtzDJZnHLvkzSw_57U9qzl5mB-ZgZhpB7CisKsngWK2BQSCUuyIJCWeVKKn55rBXkUvLva3ITwh4AuBTlgrDdYJ2P2A5xznDAbg5tyMYmiz8umzoMPWZtP7kak8smPxp3S64a7IK7O-cl2W1ev9bv-fbz7WP9ss0tK1VMsbCKcco5MwKgFE6JmtqGWxC2Lg2iqSgzHNFJQ1VdGYt1U1clpIapimJJHk5z09bfgwtR78eDTycGXYCQwChVLKnHk7J-DMG7Rk--7dHPmoI-vkQLfX5Jsk8nG2wbMbbj8A_-A_XWX_w</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Brooks, J. W.</creator><creator>Paliwoda, M. C.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4448-6351</orcidid><orcidid>https://orcid.org/0000-0001-8301-9548</orcidid></search><sort><creationdate>202405</creationdate><title>Uncertainty analysis of the plasma impedance probe</title><author>Brooks, J. W. ; Paliwoda, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-c23c7241442b50085e75d1cf4c05cd8baab912b4aae6b17d9bcadfd980ab9b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuit design</topic><topic>Density</topic><topic>Earth ionosphere</topic><topic>Impedance probes</topic><topic>Plasma</topic><topic>Plasma frequencies</topic><topic>Sheaths</topic><topic>Signal to noise ratio</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brooks, J. W.</creatorcontrib><creatorcontrib>Paliwoda, M. C.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooks, J. W.</au><au>Paliwoda, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty analysis of the plasma impedance probe</atitle><jtitle>Physics of plasmas</jtitle><date>2024-05</date><risdate>2024</risdate><volume>31</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A plasma impedance probe (PIP) is a type of in situ, radio frequency (RF) probe that is traditionally used to measure plasma properties (e.g., density) in low-density environments such as the Earth's ionosphere. We believe that PIPs are underrepresented in laboratory settings, in part because PIP operation and analysis have not been optimized for signal-to-noise ratio (SNR), reducing the probe's accuracy, upper density limit, and acquisition rate. This work presents our efforts in streamlining and simplifying the PIP design, circuit-based-model, calibration, and analysis for unmagnetized laboratory plasmas, in both continuous and pulsed PIP operation. The focus of this work is a Monte Carlo uncertainty analysis, which identifies operational and analysis procedures that improve SNR by multiple orders of magnitude. Additionally, this analysis provides evidence that the sheath resonance (and not the plasma frequency as previously believed) sets the PIP's upper density limit, which likely provides an additional method for extending the PIP's density limit.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0203675</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4448-6351</orcidid><orcidid>https://orcid.org/0000-0001-8301-9548</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2024-05, Vol.31 (5)
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_5_0203675
source Alma/SFX Local Collection
subjects Circuit design
Density
Earth ionosphere
Impedance probes
Plasma
Plasma frequencies
Sheaths
Signal to noise ratio
Uncertainty analysis
title Uncertainty analysis of the plasma impedance probe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20analysis%20of%20the%20plasma%20impedance%20probe&rft.jtitle=Physics%20of%20plasmas&rft.au=Brooks,%20J.%20W.&rft.date=2024-05&rft.volume=31&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0203675&rft_dat=%3Cproquest_cross%3E3056021172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056021172&rft_id=info:pmid/&rfr_iscdi=true