Uncertainty analysis of the plasma impedance probe
A plasma impedance probe (PIP) is a type of in situ, radio frequency (RF) probe that is traditionally used to measure plasma properties (e.g., density) in low-density environments such as the Earth's ionosphere. We believe that PIPs are underrepresented in laboratory settings, in part because P...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2024-05, Vol.31 (5) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 31 |
creator | Brooks, J. W. Paliwoda, M. C. |
description | A plasma impedance probe (PIP) is a type of in situ, radio frequency (RF) probe that is traditionally used to measure plasma properties (e.g., density) in low-density environments such as the Earth's ionosphere. We believe that PIPs are underrepresented in laboratory settings, in part because PIP operation and analysis have not been optimized for signal-to-noise ratio (SNR), reducing the probe's accuracy, upper density limit, and acquisition rate. This work presents our efforts in streamlining and simplifying the PIP design, circuit-based-model, calibration, and analysis for unmagnetized laboratory plasmas, in both continuous and pulsed PIP operation. The focus of this work is a Monte Carlo uncertainty analysis, which identifies operational and analysis procedures that improve SNR by multiple orders of magnitude. Additionally, this analysis provides evidence that the sheath resonance (and not the plasma frequency as previously believed) sets the PIP's upper density limit, which likely provides an additional method for extending the PIP's density limit. |
doi_str_mv | 10.1063/5.0203675 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0203675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056021172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-c23c7241442b50085e75d1cf4c05cd8baab912b4aae6b17d9bcadfd980ab9b933</originalsourceid><addsrcrecordid>eNp90EtLAzEQAOAgCtbqwX-w4Elh6ySbx-5RilWh4MWCtzDJZnHLvkzSw_57U9qzl5mB-ZgZhpB7CisKsngWK2BQSCUuyIJCWeVKKn55rBXkUvLva3ITwh4AuBTlgrDdYJ2P2A5xznDAbg5tyMYmiz8umzoMPWZtP7kak8smPxp3S64a7IK7O-cl2W1ev9bv-fbz7WP9ss0tK1VMsbCKcco5MwKgFE6JmtqGWxC2Lg2iqSgzHNFJQ1VdGYt1U1clpIapimJJHk5z09bfgwtR78eDTycGXYCQwChVLKnHk7J-DMG7Rk--7dHPmoI-vkQLfX5Jsk8nG2wbMbbj8A_-A_XWX_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056021172</pqid></control><display><type>article</type><title>Uncertainty analysis of the plasma impedance probe</title><source>Alma/SFX Local Collection</source><creator>Brooks, J. W. ; Paliwoda, M. C.</creator><creatorcontrib>Brooks, J. W. ; Paliwoda, M. C.</creatorcontrib><description>A plasma impedance probe (PIP) is a type of in situ, radio frequency (RF) probe that is traditionally used to measure plasma properties (e.g., density) in low-density environments such as the Earth's ionosphere. We believe that PIPs are underrepresented in laboratory settings, in part because PIP operation and analysis have not been optimized for signal-to-noise ratio (SNR), reducing the probe's accuracy, upper density limit, and acquisition rate. This work presents our efforts in streamlining and simplifying the PIP design, circuit-based-model, calibration, and analysis for unmagnetized laboratory plasmas, in both continuous and pulsed PIP operation. The focus of this work is a Monte Carlo uncertainty analysis, which identifies operational and analysis procedures that improve SNR by multiple orders of magnitude. Additionally, this analysis provides evidence that the sheath resonance (and not the plasma frequency as previously believed) sets the PIP's upper density limit, which likely provides an additional method for extending the PIP's density limit.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0203675</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Circuit design ; Density ; Earth ionosphere ; Impedance probes ; Plasma ; Plasma frequencies ; Sheaths ; Signal to noise ratio ; Uncertainty analysis</subject><ispartof>Physics of plasmas, 2024-05, Vol.31 (5)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-c23c7241442b50085e75d1cf4c05cd8baab912b4aae6b17d9bcadfd980ab9b933</cites><orcidid>0000-0002-4448-6351 ; 0000-0001-8301-9548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Brooks, J. W.</creatorcontrib><creatorcontrib>Paliwoda, M. C.</creatorcontrib><title>Uncertainty analysis of the plasma impedance probe</title><title>Physics of plasmas</title><description>A plasma impedance probe (PIP) is a type of in situ, radio frequency (RF) probe that is traditionally used to measure plasma properties (e.g., density) in low-density environments such as the Earth's ionosphere. We believe that PIPs are underrepresented in laboratory settings, in part because PIP operation and analysis have not been optimized for signal-to-noise ratio (SNR), reducing the probe's accuracy, upper density limit, and acquisition rate. This work presents our efforts in streamlining and simplifying the PIP design, circuit-based-model, calibration, and analysis for unmagnetized laboratory plasmas, in both continuous and pulsed PIP operation. The focus of this work is a Monte Carlo uncertainty analysis, which identifies operational and analysis procedures that improve SNR by multiple orders of magnitude. Additionally, this analysis provides evidence that the sheath resonance (and not the plasma frequency as previously believed) sets the PIP's upper density limit, which likely provides an additional method for extending the PIP's density limit.</description><subject>Circuit design</subject><subject>Density</subject><subject>Earth ionosphere</subject><subject>Impedance probes</subject><subject>Plasma</subject><subject>Plasma frequencies</subject><subject>Sheaths</subject><subject>Signal to noise ratio</subject><subject>Uncertainty analysis</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEQAOAgCtbqwX-w4Elh6ySbx-5RilWh4MWCtzDJZnHLvkzSw_57U9qzl5mB-ZgZhpB7CisKsngWK2BQSCUuyIJCWeVKKn55rBXkUvLva3ITwh4AuBTlgrDdYJ2P2A5xznDAbg5tyMYmiz8umzoMPWZtP7kak8smPxp3S64a7IK7O-cl2W1ev9bv-fbz7WP9ss0tK1VMsbCKcco5MwKgFE6JmtqGWxC2Lg2iqSgzHNFJQ1VdGYt1U1clpIapimJJHk5z09bfgwtR78eDTycGXYCQwChVLKnHk7J-DMG7Rk--7dHPmoI-vkQLfX5Jsk8nG2wbMbbj8A_-A_XWX_w</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Brooks, J. W.</creator><creator>Paliwoda, M. C.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4448-6351</orcidid><orcidid>https://orcid.org/0000-0001-8301-9548</orcidid></search><sort><creationdate>202405</creationdate><title>Uncertainty analysis of the plasma impedance probe</title><author>Brooks, J. W. ; Paliwoda, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-c23c7241442b50085e75d1cf4c05cd8baab912b4aae6b17d9bcadfd980ab9b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuit design</topic><topic>Density</topic><topic>Earth ionosphere</topic><topic>Impedance probes</topic><topic>Plasma</topic><topic>Plasma frequencies</topic><topic>Sheaths</topic><topic>Signal to noise ratio</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brooks, J. W.</creatorcontrib><creatorcontrib>Paliwoda, M. C.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooks, J. W.</au><au>Paliwoda, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty analysis of the plasma impedance probe</atitle><jtitle>Physics of plasmas</jtitle><date>2024-05</date><risdate>2024</risdate><volume>31</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A plasma impedance probe (PIP) is a type of in situ, radio frequency (RF) probe that is traditionally used to measure plasma properties (e.g., density) in low-density environments such as the Earth's ionosphere. We believe that PIPs are underrepresented in laboratory settings, in part because PIP operation and analysis have not been optimized for signal-to-noise ratio (SNR), reducing the probe's accuracy, upper density limit, and acquisition rate. This work presents our efforts in streamlining and simplifying the PIP design, circuit-based-model, calibration, and analysis for unmagnetized laboratory plasmas, in both continuous and pulsed PIP operation. The focus of this work is a Monte Carlo uncertainty analysis, which identifies operational and analysis procedures that improve SNR by multiple orders of magnitude. Additionally, this analysis provides evidence that the sheath resonance (and not the plasma frequency as previously believed) sets the PIP's upper density limit, which likely provides an additional method for extending the PIP's density limit.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0203675</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4448-6351</orcidid><orcidid>https://orcid.org/0000-0001-8301-9548</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2024-05, Vol.31 (5) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0203675 |
source | Alma/SFX Local Collection |
subjects | Circuit design Density Earth ionosphere Impedance probes Plasma Plasma frequencies Sheaths Signal to noise ratio Uncertainty analysis |
title | Uncertainty analysis of the plasma impedance probe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20analysis%20of%20the%20plasma%20impedance%20probe&rft.jtitle=Physics%20of%20plasmas&rft.au=Brooks,%20J.%20W.&rft.date=2024-05&rft.volume=31&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0203675&rft_dat=%3Cproquest_cross%3E3056021172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056021172&rft_id=info:pmid/&rfr_iscdi=true |