Graphics processing unit (GPU)-enhanced nonhydrostatic model with grid nesting for global tsunami propagation and coastal inundation

Nonhydrostatic models have proven their superiority in describing tsunami propagation over trans-oceanic distances and nearshore transformation because of their good dispersion and nonlinearity properties. The novel one-layer nonhydrostatic formulations proposed by Wang et al. [Phys. Fluids 35, 0766...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-04, Vol.36 (4)
Hauptverfasser: Wang, Hang, Wang, Gang, Fu, Ruili, Zheng, Jinhai, Wang, Peitao, Yu, Fujiang, Liang, Qiuhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Wang, Hang
Wang, Gang
Fu, Ruili
Zheng, Jinhai
Wang, Peitao
Yu, Fujiang
Liang, Qiuhua
description Nonhydrostatic models have proven their superiority in describing tsunami propagation over trans-oceanic distances and nearshore transformation because of their good dispersion and nonlinearity properties. The novel one-layer nonhydrostatic formulations proposed by Wang et al. [Phys. Fluids 35, 076610 (2023)] have been rederived in the spherical coordinate system incorporating Coriolis effects to enable the application of basin-wide tsunami propagation. The model was implemented using the fractional step method, where the hydrostatic step was solved by a Godunov-type finite-volume scheme, and the nonhydrostatic step was obtained with the finite-difference method. Additionally, a two-way grid-nesting scheme was employed to adapt the topographic features for efficient computation of tsunami propagation in deep ocean and coastal inundation. Furthermore, graphics processing unit (GPU)-parallelism technique was incorporated to further optimize the model performance. An idealized benchmark test as well as three experiments of regular and irregular waves, solitary, and N-waves transformations have been simulated to demonstrate the superior performance of the current GPU-accelerated grid-nesting nonhydrostatic model. Finally, the model has been applied to reproduce the 1964 Prince William Sound Tsunami, its propagation across the North Pacific and induced inundation in the Seaside.
doi_str_mv 10.1063/5.0203639
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0203639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034827676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-545ca7fa690da92be60066b0c5f5d2a69c3e5a5fd1f49927c38aa8a37ec23c4f3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhisEEmNw4B9E4sKQCmnTJO0RTTCQJsGBnSsvH22mLhlJK7Q7P5x025mTLfvx69dOktsMP2aYkSf6iHNMGKnOkkmGyyrljLHzMec4ZYxkl8lVCBuMMalyNkl-Fx52rREB7bwTKgRjGzRY06P7xedqlirbghVKIutsu5fehR56I9DWSdWhH9O3qPEmtlXox1HtPGo6t4YO9WGwsDWj8A6aOOUsAiuRcBBFOmTsYOWhfJ1caOiCujnFabJ6ffmav6XLj8X7_HmZirzkfUoLKoBrYBWWUOVrxTBmbI0F1VTmsSyIokC1zHRRVTkXpAQogXAlciIKTabJ3VE3WvoeouN64wZv48qaYFKUOWecRWp2pES8Nnil6503W_D7OsP1-OSa1qcnR_bhyAZh-sMt_8B__9d-pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034827676</pqid></control><display><type>article</type><title>Graphics processing unit (GPU)-enhanced nonhydrostatic model with grid nesting for global tsunami propagation and coastal inundation</title><source>AIP Journals Complete</source><creator>Wang, Hang ; Wang, Gang ; Fu, Ruili ; Zheng, Jinhai ; Wang, Peitao ; Yu, Fujiang ; Liang, Qiuhua</creator><creatorcontrib>Wang, Hang ; Wang, Gang ; Fu, Ruili ; Zheng, Jinhai ; Wang, Peitao ; Yu, Fujiang ; Liang, Qiuhua</creatorcontrib><description>Nonhydrostatic models have proven their superiority in describing tsunami propagation over trans-oceanic distances and nearshore transformation because of their good dispersion and nonlinearity properties. The novel one-layer nonhydrostatic formulations proposed by Wang et al. [Phys. Fluids 35, 076610 (2023)] have been rederived in the spherical coordinate system incorporating Coriolis effects to enable the application of basin-wide tsunami propagation. The model was implemented using the fractional step method, where the hydrostatic step was solved by a Godunov-type finite-volume scheme, and the nonhydrostatic step was obtained with the finite-difference method. Additionally, a two-way grid-nesting scheme was employed to adapt the topographic features for efficient computation of tsunami propagation in deep ocean and coastal inundation. Furthermore, graphics processing unit (GPU)-parallelism technique was incorporated to further optimize the model performance. An idealized benchmark test as well as three experiments of regular and irregular waves, solitary, and N-waves transformations have been simulated to demonstrate the superior performance of the current GPU-accelerated grid-nesting nonhydrostatic model. Finally, the model has been applied to reproduce the 1964 Prince William Sound Tsunami, its propagation across the North Pacific and induced inundation in the Seaside.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0203639</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coastal processes ; Coriolis effect ; Finite difference method ; Finite volume method ; Graphics processing units ; Nesting ; Ocean models ; Propagation ; Spherical coordinates ; Tsunamis</subject><ispartof>Physics of fluids (1994), 2024-04, Vol.36 (4)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-545ca7fa690da92be60066b0c5f5d2a69c3e5a5fd1f49927c38aa8a37ec23c4f3</cites><orcidid>0000-0002-6629-7180 ; 0000-0003-3223-6344 ; 0000-0003-3555-5922 ; 0009-0006-9123-4655 ; 0000-0003-2871-3355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,795,4513,27928,27929</link.rule.ids></links><search><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Fu, Ruili</creatorcontrib><creatorcontrib>Zheng, Jinhai</creatorcontrib><creatorcontrib>Wang, Peitao</creatorcontrib><creatorcontrib>Yu, Fujiang</creatorcontrib><creatorcontrib>Liang, Qiuhua</creatorcontrib><title>Graphics processing unit (GPU)-enhanced nonhydrostatic model with grid nesting for global tsunami propagation and coastal inundation</title><title>Physics of fluids (1994)</title><description>Nonhydrostatic models have proven their superiority in describing tsunami propagation over trans-oceanic distances and nearshore transformation because of their good dispersion and nonlinearity properties. The novel one-layer nonhydrostatic formulations proposed by Wang et al. [Phys. Fluids 35, 076610 (2023)] have been rederived in the spherical coordinate system incorporating Coriolis effects to enable the application of basin-wide tsunami propagation. The model was implemented using the fractional step method, where the hydrostatic step was solved by a Godunov-type finite-volume scheme, and the nonhydrostatic step was obtained with the finite-difference method. Additionally, a two-way grid-nesting scheme was employed to adapt the topographic features for efficient computation of tsunami propagation in deep ocean and coastal inundation. Furthermore, graphics processing unit (GPU)-parallelism technique was incorporated to further optimize the model performance. An idealized benchmark test as well as three experiments of regular and irregular waves, solitary, and N-waves transformations have been simulated to demonstrate the superior performance of the current GPU-accelerated grid-nesting nonhydrostatic model. Finally, the model has been applied to reproduce the 1964 Prince William Sound Tsunami, its propagation across the North Pacific and induced inundation in the Seaside.</description><subject>Coastal processes</subject><subject>Coriolis effect</subject><subject>Finite difference method</subject><subject>Finite volume method</subject><subject>Graphics processing units</subject><subject>Nesting</subject><subject>Ocean models</subject><subject>Propagation</subject><subject>Spherical coordinates</subject><subject>Tsunamis</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhisEEmNw4B9E4sKQCmnTJO0RTTCQJsGBnSsvH22mLhlJK7Q7P5x025mTLfvx69dOktsMP2aYkSf6iHNMGKnOkkmGyyrljLHzMec4ZYxkl8lVCBuMMalyNkl-Fx52rREB7bwTKgRjGzRY06P7xedqlirbghVKIutsu5fehR56I9DWSdWhH9O3qPEmtlXox1HtPGo6t4YO9WGwsDWj8A6aOOUsAiuRcBBFOmTsYOWhfJ1caOiCujnFabJ6ffmav6XLj8X7_HmZirzkfUoLKoBrYBWWUOVrxTBmbI0F1VTmsSyIokC1zHRRVTkXpAQogXAlciIKTabJ3VE3WvoeouN64wZv48qaYFKUOWecRWp2pES8Nnil6503W_D7OsP1-OSa1qcnR_bhyAZh-sMt_8B__9d-pw</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Wang, Hang</creator><creator>Wang, Gang</creator><creator>Fu, Ruili</creator><creator>Zheng, Jinhai</creator><creator>Wang, Peitao</creator><creator>Yu, Fujiang</creator><creator>Liang, Qiuhua</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6629-7180</orcidid><orcidid>https://orcid.org/0000-0003-3223-6344</orcidid><orcidid>https://orcid.org/0000-0003-3555-5922</orcidid><orcidid>https://orcid.org/0009-0006-9123-4655</orcidid><orcidid>https://orcid.org/0000-0003-2871-3355</orcidid></search><sort><creationdate>202404</creationdate><title>Graphics processing unit (GPU)-enhanced nonhydrostatic model with grid nesting for global tsunami propagation and coastal inundation</title><author>Wang, Hang ; Wang, Gang ; Fu, Ruili ; Zheng, Jinhai ; Wang, Peitao ; Yu, Fujiang ; Liang, Qiuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-545ca7fa690da92be60066b0c5f5d2a69c3e5a5fd1f49927c38aa8a37ec23c4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coastal processes</topic><topic>Coriolis effect</topic><topic>Finite difference method</topic><topic>Finite volume method</topic><topic>Graphics processing units</topic><topic>Nesting</topic><topic>Ocean models</topic><topic>Propagation</topic><topic>Spherical coordinates</topic><topic>Tsunamis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Fu, Ruili</creatorcontrib><creatorcontrib>Zheng, Jinhai</creatorcontrib><creatorcontrib>Wang, Peitao</creatorcontrib><creatorcontrib>Yu, Fujiang</creatorcontrib><creatorcontrib>Liang, Qiuhua</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hang</au><au>Wang, Gang</au><au>Fu, Ruili</au><au>Zheng, Jinhai</au><au>Wang, Peitao</au><au>Yu, Fujiang</au><au>Liang, Qiuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphics processing unit (GPU)-enhanced nonhydrostatic model with grid nesting for global tsunami propagation and coastal inundation</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-04</date><risdate>2024</risdate><volume>36</volume><issue>4</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Nonhydrostatic models have proven their superiority in describing tsunami propagation over trans-oceanic distances and nearshore transformation because of their good dispersion and nonlinearity properties. The novel one-layer nonhydrostatic formulations proposed by Wang et al. [Phys. Fluids 35, 076610 (2023)] have been rederived in the spherical coordinate system incorporating Coriolis effects to enable the application of basin-wide tsunami propagation. The model was implemented using the fractional step method, where the hydrostatic step was solved by a Godunov-type finite-volume scheme, and the nonhydrostatic step was obtained with the finite-difference method. Additionally, a two-way grid-nesting scheme was employed to adapt the topographic features for efficient computation of tsunami propagation in deep ocean and coastal inundation. Furthermore, graphics processing unit (GPU)-parallelism technique was incorporated to further optimize the model performance. An idealized benchmark test as well as three experiments of regular and irregular waves, solitary, and N-waves transformations have been simulated to demonstrate the superior performance of the current GPU-accelerated grid-nesting nonhydrostatic model. Finally, the model has been applied to reproduce the 1964 Prince William Sound Tsunami, its propagation across the North Pacific and induced inundation in the Seaside.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0203639</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6629-7180</orcidid><orcidid>https://orcid.org/0000-0003-3223-6344</orcidid><orcidid>https://orcid.org/0000-0003-3555-5922</orcidid><orcidid>https://orcid.org/0009-0006-9123-4655</orcidid><orcidid>https://orcid.org/0000-0003-2871-3355</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-04, Vol.36 (4)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0203639
source AIP Journals Complete
subjects Coastal processes
Coriolis effect
Finite difference method
Finite volume method
Graphics processing units
Nesting
Ocean models
Propagation
Spherical coordinates
Tsunamis
title Graphics processing unit (GPU)-enhanced nonhydrostatic model with grid nesting for global tsunami propagation and coastal inundation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphics%20processing%20unit%20(GPU)-enhanced%20nonhydrostatic%20model%20with%20grid%20nesting%20for%20global%20tsunami%20propagation%20and%20coastal%20inundation&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Wang,%20Hang&rft.date=2024-04&rft.volume=36&rft.issue=4&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0203639&rft_dat=%3Cproquest_cross%3E3034827676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034827676&rft_id=info:pmid/&rfr_iscdi=true