Graphics processing unit (GPU)-enhanced nonhydrostatic model with grid nesting for global tsunami propagation and coastal inundation
Nonhydrostatic models have proven their superiority in describing tsunami propagation over trans-oceanic distances and nearshore transformation because of their good dispersion and nonlinearity properties. The novel one-layer nonhydrostatic formulations proposed by Wang et al. [Phys. Fluids 35, 0766...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-04, Vol.36 (4) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Wang, Hang Wang, Gang Fu, Ruili Zheng, Jinhai Wang, Peitao Yu, Fujiang Liang, Qiuhua |
description | Nonhydrostatic models have proven their superiority in describing tsunami propagation over trans-oceanic distances and nearshore transformation because of their good dispersion and nonlinearity properties. The novel one-layer nonhydrostatic formulations proposed by Wang et al. [Phys. Fluids 35, 076610 (2023)] have been rederived in the spherical coordinate system incorporating Coriolis effects to enable the application of basin-wide tsunami propagation. The model was implemented using the fractional step method, where the hydrostatic step was solved by a Godunov-type finite-volume scheme, and the nonhydrostatic step was obtained with the finite-difference method. Additionally, a two-way grid-nesting scheme was employed to adapt the topographic features for efficient computation of tsunami propagation in deep ocean and coastal inundation. Furthermore, graphics processing unit (GPU)-parallelism technique was incorporated to further optimize the model performance. An idealized benchmark test as well as three experiments of regular and irregular waves, solitary, and N-waves transformations have been simulated to demonstrate the superior performance of the current GPU-accelerated grid-nesting nonhydrostatic model. Finally, the model has been applied to reproduce the 1964 Prince William Sound Tsunami, its propagation across the North Pacific and induced inundation in the Seaside. |
doi_str_mv | 10.1063/5.0203639 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0203639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034827676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-545ca7fa690da92be60066b0c5f5d2a69c3e5a5fd1f49927c38aa8a37ec23c4f3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhisEEmNw4B9E4sKQCmnTJO0RTTCQJsGBnSsvH22mLhlJK7Q7P5x025mTLfvx69dOktsMP2aYkSf6iHNMGKnOkkmGyyrljLHzMec4ZYxkl8lVCBuMMalyNkl-Fx52rREB7bwTKgRjGzRY06P7xedqlirbghVKIutsu5fehR56I9DWSdWhH9O3qPEmtlXox1HtPGo6t4YO9WGwsDWj8A6aOOUsAiuRcBBFOmTsYOWhfJ1caOiCujnFabJ6ffmav6XLj8X7_HmZirzkfUoLKoBrYBWWUOVrxTBmbI0F1VTmsSyIokC1zHRRVTkXpAQogXAlciIKTabJ3VE3WvoeouN64wZv48qaYFKUOWecRWp2pES8Nnil6503W_D7OsP1-OSa1qcnR_bhyAZh-sMt_8B__9d-pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034827676</pqid></control><display><type>article</type><title>Graphics processing unit (GPU)-enhanced nonhydrostatic model with grid nesting for global tsunami propagation and coastal inundation</title><source>AIP Journals Complete</source><creator>Wang, Hang ; Wang, Gang ; Fu, Ruili ; Zheng, Jinhai ; Wang, Peitao ; Yu, Fujiang ; Liang, Qiuhua</creator><creatorcontrib>Wang, Hang ; Wang, Gang ; Fu, Ruili ; Zheng, Jinhai ; Wang, Peitao ; Yu, Fujiang ; Liang, Qiuhua</creatorcontrib><description>Nonhydrostatic models have proven their superiority in describing tsunami propagation over trans-oceanic distances and nearshore transformation because of their good dispersion and nonlinearity properties. The novel one-layer nonhydrostatic formulations proposed by Wang et al. [Phys. Fluids 35, 076610 (2023)] have been rederived in the spherical coordinate system incorporating Coriolis effects to enable the application of basin-wide tsunami propagation. The model was implemented using the fractional step method, where the hydrostatic step was solved by a Godunov-type finite-volume scheme, and the nonhydrostatic step was obtained with the finite-difference method. Additionally, a two-way grid-nesting scheme was employed to adapt the topographic features for efficient computation of tsunami propagation in deep ocean and coastal inundation. Furthermore, graphics processing unit (GPU)-parallelism technique was incorporated to further optimize the model performance. An idealized benchmark test as well as three experiments of regular and irregular waves, solitary, and N-waves transformations have been simulated to demonstrate the superior performance of the current GPU-accelerated grid-nesting nonhydrostatic model. Finally, the model has been applied to reproduce the 1964 Prince William Sound Tsunami, its propagation across the North Pacific and induced inundation in the Seaside.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0203639</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coastal processes ; Coriolis effect ; Finite difference method ; Finite volume method ; Graphics processing units ; Nesting ; Ocean models ; Propagation ; Spherical coordinates ; Tsunamis</subject><ispartof>Physics of fluids (1994), 2024-04, Vol.36 (4)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-545ca7fa690da92be60066b0c5f5d2a69c3e5a5fd1f49927c38aa8a37ec23c4f3</cites><orcidid>0000-0002-6629-7180 ; 0000-0003-3223-6344 ; 0000-0003-3555-5922 ; 0009-0006-9123-4655 ; 0000-0003-2871-3355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,795,4513,27928,27929</link.rule.ids></links><search><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Fu, Ruili</creatorcontrib><creatorcontrib>Zheng, Jinhai</creatorcontrib><creatorcontrib>Wang, Peitao</creatorcontrib><creatorcontrib>Yu, Fujiang</creatorcontrib><creatorcontrib>Liang, Qiuhua</creatorcontrib><title>Graphics processing unit (GPU)-enhanced nonhydrostatic model with grid nesting for global tsunami propagation and coastal inundation</title><title>Physics of fluids (1994)</title><description>Nonhydrostatic models have proven their superiority in describing tsunami propagation over trans-oceanic distances and nearshore transformation because of their good dispersion and nonlinearity properties. The novel one-layer nonhydrostatic formulations proposed by Wang et al. [Phys. Fluids 35, 076610 (2023)] have been rederived in the spherical coordinate system incorporating Coriolis effects to enable the application of basin-wide tsunami propagation. The model was implemented using the fractional step method, where the hydrostatic step was solved by a Godunov-type finite-volume scheme, and the nonhydrostatic step was obtained with the finite-difference method. Additionally, a two-way grid-nesting scheme was employed to adapt the topographic features for efficient computation of tsunami propagation in deep ocean and coastal inundation. Furthermore, graphics processing unit (GPU)-parallelism technique was incorporated to further optimize the model performance. An idealized benchmark test as well as three experiments of regular and irregular waves, solitary, and N-waves transformations have been simulated to demonstrate the superior performance of the current GPU-accelerated grid-nesting nonhydrostatic model. Finally, the model has been applied to reproduce the 1964 Prince William Sound Tsunami, its propagation across the North Pacific and induced inundation in the Seaside.</description><subject>Coastal processes</subject><subject>Coriolis effect</subject><subject>Finite difference method</subject><subject>Finite volume method</subject><subject>Graphics processing units</subject><subject>Nesting</subject><subject>Ocean models</subject><subject>Propagation</subject><subject>Spherical coordinates</subject><subject>Tsunamis</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhisEEmNw4B9E4sKQCmnTJO0RTTCQJsGBnSsvH22mLhlJK7Q7P5x025mTLfvx69dOktsMP2aYkSf6iHNMGKnOkkmGyyrljLHzMec4ZYxkl8lVCBuMMalyNkl-Fx52rREB7bwTKgRjGzRY06P7xedqlirbghVKIutsu5fehR56I9DWSdWhH9O3qPEmtlXox1HtPGo6t4YO9WGwsDWj8A6aOOUsAiuRcBBFOmTsYOWhfJ1caOiCujnFabJ6ffmav6XLj8X7_HmZirzkfUoLKoBrYBWWUOVrxTBmbI0F1VTmsSyIokC1zHRRVTkXpAQogXAlciIKTabJ3VE3WvoeouN64wZv48qaYFKUOWecRWp2pES8Nnil6503W_D7OsP1-OSa1qcnR_bhyAZh-sMt_8B__9d-pw</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Wang, Hang</creator><creator>Wang, Gang</creator><creator>Fu, Ruili</creator><creator>Zheng, Jinhai</creator><creator>Wang, Peitao</creator><creator>Yu, Fujiang</creator><creator>Liang, Qiuhua</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6629-7180</orcidid><orcidid>https://orcid.org/0000-0003-3223-6344</orcidid><orcidid>https://orcid.org/0000-0003-3555-5922</orcidid><orcidid>https://orcid.org/0009-0006-9123-4655</orcidid><orcidid>https://orcid.org/0000-0003-2871-3355</orcidid></search><sort><creationdate>202404</creationdate><title>Graphics processing unit (GPU)-enhanced nonhydrostatic model with grid nesting for global tsunami propagation and coastal inundation</title><author>Wang, Hang ; Wang, Gang ; Fu, Ruili ; Zheng, Jinhai ; Wang, Peitao ; Yu, Fujiang ; Liang, Qiuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-545ca7fa690da92be60066b0c5f5d2a69c3e5a5fd1f49927c38aa8a37ec23c4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coastal processes</topic><topic>Coriolis effect</topic><topic>Finite difference method</topic><topic>Finite volume method</topic><topic>Graphics processing units</topic><topic>Nesting</topic><topic>Ocean models</topic><topic>Propagation</topic><topic>Spherical coordinates</topic><topic>Tsunamis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Fu, Ruili</creatorcontrib><creatorcontrib>Zheng, Jinhai</creatorcontrib><creatorcontrib>Wang, Peitao</creatorcontrib><creatorcontrib>Yu, Fujiang</creatorcontrib><creatorcontrib>Liang, Qiuhua</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hang</au><au>Wang, Gang</au><au>Fu, Ruili</au><au>Zheng, Jinhai</au><au>Wang, Peitao</au><au>Yu, Fujiang</au><au>Liang, Qiuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphics processing unit (GPU)-enhanced nonhydrostatic model with grid nesting for global tsunami propagation and coastal inundation</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-04</date><risdate>2024</risdate><volume>36</volume><issue>4</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Nonhydrostatic models have proven their superiority in describing tsunami propagation over trans-oceanic distances and nearshore transformation because of their good dispersion and nonlinearity properties. The novel one-layer nonhydrostatic formulations proposed by Wang et al. [Phys. Fluids 35, 076610 (2023)] have been rederived in the spherical coordinate system incorporating Coriolis effects to enable the application of basin-wide tsunami propagation. The model was implemented using the fractional step method, where the hydrostatic step was solved by a Godunov-type finite-volume scheme, and the nonhydrostatic step was obtained with the finite-difference method. Additionally, a two-way grid-nesting scheme was employed to adapt the topographic features for efficient computation of tsunami propagation in deep ocean and coastal inundation. Furthermore, graphics processing unit (GPU)-parallelism technique was incorporated to further optimize the model performance. An idealized benchmark test as well as three experiments of regular and irregular waves, solitary, and N-waves transformations have been simulated to demonstrate the superior performance of the current GPU-accelerated grid-nesting nonhydrostatic model. Finally, the model has been applied to reproduce the 1964 Prince William Sound Tsunami, its propagation across the North Pacific and induced inundation in the Seaside.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0203639</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6629-7180</orcidid><orcidid>https://orcid.org/0000-0003-3223-6344</orcidid><orcidid>https://orcid.org/0000-0003-3555-5922</orcidid><orcidid>https://orcid.org/0009-0006-9123-4655</orcidid><orcidid>https://orcid.org/0000-0003-2871-3355</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-04, Vol.36 (4) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0203639 |
source | AIP Journals Complete |
subjects | Coastal processes Coriolis effect Finite difference method Finite volume method Graphics processing units Nesting Ocean models Propagation Spherical coordinates Tsunamis |
title | Graphics processing unit (GPU)-enhanced nonhydrostatic model with grid nesting for global tsunami propagation and coastal inundation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphics%20processing%20unit%20(GPU)-enhanced%20nonhydrostatic%20model%20with%20grid%20nesting%20for%20global%20tsunami%20propagation%20and%20coastal%20inundation&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Wang,%20Hang&rft.date=2024-04&rft.volume=36&rft.issue=4&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0203639&rft_dat=%3Cproquest_cross%3E3034827676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034827676&rft_id=info:pmid/&rfr_iscdi=true |