Analytical model of a nanowire-based betavoltaic device

An analytical device physics model is presented for determining the energy conversion efficiency of semiconductor nanowire array-based radial (core–shell) p-i-n junction betavoltaic cells for two- and three-dimensional radioisotope source geometries. Optimum short-circuit current density J sc, open-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2024-04, Vol.135 (13)
Hauptverfasser: Thomas, Amanda, LaPierre, Ray R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Journal of applied physics
container_volume 135
creator Thomas, Amanda
LaPierre, Ray R.
description An analytical device physics model is presented for determining the energy conversion efficiency of semiconductor nanowire array-based radial (core–shell) p-i-n junction betavoltaic cells for two- and three-dimensional radioisotope source geometries. Optimum short-circuit current density J sc, open-circuit voltage V oc, fill factor F F, and energy conversion efficiency η are determined for various nanowire properties, including dopant concentration, nanowire length, core diameter, and shell thickness, for Si, GaAs, and GaP material systems. A maximum efficiency of 8.05 % was obtained for GaP nanowires with diameter 200 nm (p-core diameter, i-shell, and n-shell thicknesses of 24, 29.4, and 58.6 nm, respectively), length 10 μ m, acceptor and donor concentrations of 10 19 and 5 × 10 18 cm − 3, respectively, and a 3D source geometry.
doi_str_mv 10.1063/5.0202949
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0202949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031403275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d172c3b4721d3dfd3bf18ac9fe33e80d8669dc14a4e7641261e4178ecd9624153</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcYcKUwNTfJTJJlKf5BwY2uQya5AynTSU3SSt_elnbt6mw-zr0cQu6BzoC2_LmZUUaZFvqCTIAqXcumoZdkQimDWmmpr8lNzitKARTXEyLnox32JTg7VOvocahiX9lqtGP8DQnrzmb0VYfF7uJQbHCVx11weEuuejtkvDvnlHy_vnwt3uvl59vHYr6sHWey1B4kc7wTkoHnvve860FZp3vkHBX1qm21dyCsQNkKYC2gAKnQed0yAQ2fkodT7ybFny3mYlZxmw4_Z8MpB0EPZ47q8aRcijkn7M0mhbVNewPUHHcxjTnvcrBPJ5tdKLaEOP6D_wBEcWBq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031403275</pqid></control><display><type>article</type><title>Analytical model of a nanowire-based betavoltaic device</title><source>Alma/SFX Local Collection</source><creator>Thomas, Amanda ; LaPierre, Ray R.</creator><creatorcontrib>Thomas, Amanda ; LaPierre, Ray R.</creatorcontrib><description>An analytical device physics model is presented for determining the energy conversion efficiency of semiconductor nanowire array-based radial (core–shell) p-i-n junction betavoltaic cells for two- and three-dimensional radioisotope source geometries. Optimum short-circuit current density J sc, open-circuit voltage V oc, fill factor F F, and energy conversion efficiency η are determined for various nanowire properties, including dopant concentration, nanowire length, core diameter, and shell thickness, for Si, GaAs, and GaP material systems. A maximum efficiency of 8.05 % was obtained for GaP nanowires with diameter 200 nm (p-core diameter, i-shell, and n-shell thicknesses of 24, 29.4, and 58.6 nm, respectively), length 10 μ m, acceptor and donor concentrations of 10 19 and 5 × 10 18 cm − 3, respectively, and a 3D source geometry.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0202949</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Diameters ; Energy conversion efficiency ; Gallium phosphides ; Mathematical models ; Nanowires ; Open circuit voltage ; P-i-n junctions ; Radioisotopes ; Short circuit currents ; Thickness</subject><ispartof>Journal of applied physics, 2024-04, Vol.135 (13)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d172c3b4721d3dfd3bf18ac9fe33e80d8669dc14a4e7641261e4178ecd9624153</citedby><cites>FETCH-LOGICAL-c327t-d172c3b4721d3dfd3bf18ac9fe33e80d8669dc14a4e7641261e4178ecd9624153</cites><orcidid>0000-0003-4598-8940 ; 0009-0002-6472-8300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Thomas, Amanda</creatorcontrib><creatorcontrib>LaPierre, Ray R.</creatorcontrib><title>Analytical model of a nanowire-based betavoltaic device</title><title>Journal of applied physics</title><description>An analytical device physics model is presented for determining the energy conversion efficiency of semiconductor nanowire array-based radial (core–shell) p-i-n junction betavoltaic cells for two- and three-dimensional radioisotope source geometries. Optimum short-circuit current density J sc, open-circuit voltage V oc, fill factor F F, and energy conversion efficiency η are determined for various nanowire properties, including dopant concentration, nanowire length, core diameter, and shell thickness, for Si, GaAs, and GaP material systems. A maximum efficiency of 8.05 % was obtained for GaP nanowires with diameter 200 nm (p-core diameter, i-shell, and n-shell thicknesses of 24, 29.4, and 58.6 nm, respectively), length 10 μ m, acceptor and donor concentrations of 10 19 and 5 × 10 18 cm − 3, respectively, and a 3D source geometry.</description><subject>Diameters</subject><subject>Energy conversion efficiency</subject><subject>Gallium phosphides</subject><subject>Mathematical models</subject><subject>Nanowires</subject><subject>Open circuit voltage</subject><subject>P-i-n junctions</subject><subject>Radioisotopes</subject><subject>Short circuit currents</subject><subject>Thickness</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcYcKUwNTfJTJJlKf5BwY2uQya5AynTSU3SSt_elnbt6mw-zr0cQu6BzoC2_LmZUUaZFvqCTIAqXcumoZdkQimDWmmpr8lNzitKARTXEyLnox32JTg7VOvocahiX9lqtGP8DQnrzmb0VYfF7uJQbHCVx11weEuuejtkvDvnlHy_vnwt3uvl59vHYr6sHWey1B4kc7wTkoHnvve860FZp3vkHBX1qm21dyCsQNkKYC2gAKnQed0yAQ2fkodT7ybFny3mYlZxmw4_Z8MpB0EPZ47q8aRcijkn7M0mhbVNewPUHHcxjTnvcrBPJ5tdKLaEOP6D_wBEcWBq</recordid><startdate>20240407</startdate><enddate>20240407</enddate><creator>Thomas, Amanda</creator><creator>LaPierre, Ray R.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4598-8940</orcidid><orcidid>https://orcid.org/0009-0002-6472-8300</orcidid></search><sort><creationdate>20240407</creationdate><title>Analytical model of a nanowire-based betavoltaic device</title><author>Thomas, Amanda ; LaPierre, Ray R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d172c3b4721d3dfd3bf18ac9fe33e80d8669dc14a4e7641261e4178ecd9624153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Diameters</topic><topic>Energy conversion efficiency</topic><topic>Gallium phosphides</topic><topic>Mathematical models</topic><topic>Nanowires</topic><topic>Open circuit voltage</topic><topic>P-i-n junctions</topic><topic>Radioisotopes</topic><topic>Short circuit currents</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Amanda</creatorcontrib><creatorcontrib>LaPierre, Ray R.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Amanda</au><au>LaPierre, Ray R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical model of a nanowire-based betavoltaic device</atitle><jtitle>Journal of applied physics</jtitle><date>2024-04-07</date><risdate>2024</risdate><volume>135</volume><issue>13</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>An analytical device physics model is presented for determining the energy conversion efficiency of semiconductor nanowire array-based radial (core–shell) p-i-n junction betavoltaic cells for two- and three-dimensional radioisotope source geometries. Optimum short-circuit current density J sc, open-circuit voltage V oc, fill factor F F, and energy conversion efficiency η are determined for various nanowire properties, including dopant concentration, nanowire length, core diameter, and shell thickness, for Si, GaAs, and GaP material systems. A maximum efficiency of 8.05 % was obtained for GaP nanowires with diameter 200 nm (p-core diameter, i-shell, and n-shell thicknesses of 24, 29.4, and 58.6 nm, respectively), length 10 μ m, acceptor and donor concentrations of 10 19 and 5 × 10 18 cm − 3, respectively, and a 3D source geometry.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0202949</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4598-8940</orcidid><orcidid>https://orcid.org/0009-0002-6472-8300</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-04, Vol.135 (13)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0202949
source Alma/SFX Local Collection
subjects Diameters
Energy conversion efficiency
Gallium phosphides
Mathematical models
Nanowires
Open circuit voltage
P-i-n junctions
Radioisotopes
Short circuit currents
Thickness
title Analytical model of a nanowire-based betavoltaic device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20model%20of%20a%20nanowire-based%20betavoltaic%20device&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Thomas,%20Amanda&rft.date=2024-04-07&rft.volume=135&rft.issue=13&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0202949&rft_dat=%3Cproquest_cross%3E3031403275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031403275&rft_id=info:pmid/&rfr_iscdi=true