First-principles-based machine learning interatomic potential for molecular dynamics simulations of 2D lateral MoS2/WS2 heterostructures
Understanding the mechanical and thermodynamic properties of transition-metal dichalcogenides (TMDs) and their heterostructures is pivotal for advancing the development of flexible semiconductor devices, and molecular dynamics (MD) simulation is widely applied to study these properties. However, cur...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2024-05, Vol.135 (20) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 135 |
creator | Liu, Xiangjun Wang, Baolong Jia, Kun Wang, Quanjie Wang, Di Xiong, Yucheng |
description | Understanding the mechanical and thermodynamic properties of transition-metal dichalcogenides (TMDs) and their heterostructures is pivotal for advancing the development of flexible semiconductor devices, and molecular dynamics (MD) simulation is widely applied to study these properties. However, current uncertainties persist regarding the efficacy of empirical potentials in MD simulations to accurately describe the intricate performance of complex interfaces within heterostructures. This study addresses these challenges by developing an interatomic potential based on deep neural networks and first-principles calculations. Specifically focusing on MoS2/WS2 heterostructures, our approach aims to predict Young's modulus and thermal conductivities. The potential's effectiveness is demonstrated through the validation of structural features, mechanical properties, and thermodynamic characteristics, revealing close alignment with values derived from first-principles calculations. A noteworthy finding is the substantial influence of the load direction on Young's modulus of heterostructures. Furthermore, our results highlight that the interfacial thermal conductance of the MoS2/WS2 heterostructures is considerably larger than that of graphene-based interfaces. The potential developed in this work facilitates large-scale material simulations, bridging the gap with first-principles calculations. Notably, it outperforms empirical potentials under interface conditions, establishing its significant competitiveness in simulation computations. Our approach not only contributes to a deeper understanding of TMDs and heterostructures but also presents a robust tool for the simulation of their mechanical and thermal behaviors, paving the way for advancements in flexible semiconductor device manufacturing. |
doi_str_mv | 10.1063/5.0201527 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0201527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060860678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-680c35c1270e41a40a4a2cc8a74800030e7c9f70792a3eae3249848414ef1ad73</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EEiFQ8AeWqEDaZOx92FuiQAApiCIgypVxZomjXTvY3iJ_wGdjSGqq0dw587qEXDKYMKjyaTkBDqzk4oiMGMg6E2UJx2QEwFkma1GfkrMQNgCMybweke-58SFmW2-sNtsOQ_ahAq5or_TaWKQdKm-N_aTGRvQqut5ounURbTSqo63ztHcd6qFTnq52VqV6oMH0SYjG2UBdS_kdTVlq7-izW_Lp-5LTNSbBhegHHQeP4ZyctKoLeHGIY_I2v3-dPWaLl4en2e0i05yJmFUSdF5qxgVgwVQBqlBca6lEIQEgBxS6bgWImqscFea8qGUhC1Zgy9RK5GNytZ-79e5rwBCbjRu8TSubHCqQFVRCJup6T-l0Y_DYNsmhXvldw6D5Nbopm4PRib3Zs0Gb-Pf0P_APuRB-vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060860678</pqid></control><display><type>article</type><title>First-principles-based machine learning interatomic potential for molecular dynamics simulations of 2D lateral MoS2/WS2 heterostructures</title><source>Alma/SFX Local Collection</source><creator>Liu, Xiangjun ; Wang, Baolong ; Jia, Kun ; Wang, Quanjie ; Wang, Di ; Xiong, Yucheng</creator><creatorcontrib>Liu, Xiangjun ; Wang, Baolong ; Jia, Kun ; Wang, Quanjie ; Wang, Di ; Xiong, Yucheng</creatorcontrib><description>Understanding the mechanical and thermodynamic properties of transition-metal dichalcogenides (TMDs) and their heterostructures is pivotal for advancing the development of flexible semiconductor devices, and molecular dynamics (MD) simulation is widely applied to study these properties. However, current uncertainties persist regarding the efficacy of empirical potentials in MD simulations to accurately describe the intricate performance of complex interfaces within heterostructures. This study addresses these challenges by developing an interatomic potential based on deep neural networks and first-principles calculations. Specifically focusing on MoS2/WS2 heterostructures, our approach aims to predict Young's modulus and thermal conductivities. The potential's effectiveness is demonstrated through the validation of structural features, mechanical properties, and thermodynamic characteristics, revealing close alignment with values derived from first-principles calculations. A noteworthy finding is the substantial influence of the load direction on Young's modulus of heterostructures. Furthermore, our results highlight that the interfacial thermal conductance of the MoS2/WS2 heterostructures is considerably larger than that of graphene-based interfaces. The potential developed in this work facilitates large-scale material simulations, bridging the gap with first-principles calculations. Notably, it outperforms empirical potentials under interface conditions, establishing its significant competitiveness in simulation computations. Our approach not only contributes to a deeper understanding of TMDs and heterostructures but also presents a robust tool for the simulation of their mechanical and thermal behaviors, paving the way for advancements in flexible semiconductor device manufacturing.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0201527</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; First principles ; Graphene ; Graphical user interface ; Heterostructures ; Machine learning ; Mechanical properties ; Modulus of elasticity ; Molecular dynamics ; Molybdenum disulfide ; Semiconductor devices ; Simulation ; Thermal conductivity ; Thermodynamic properties ; Thermodynamics ; Transition metal compounds ; Tungsten disulfide</subject><ispartof>Journal of applied physics, 2024-05, Vol.135 (20)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-680c35c1270e41a40a4a2cc8a74800030e7c9f70792a3eae3249848414ef1ad73</cites><orcidid>0009-0008-7947-1900 ; 0000-0003-1293-8488 ; 0009-0004-1104-8082 ; 0000-0002-1714-6773 ; 0000-0001-6023-785X ; 0009-0001-8544-2531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Xiangjun</creatorcontrib><creatorcontrib>Wang, Baolong</creatorcontrib><creatorcontrib>Jia, Kun</creatorcontrib><creatorcontrib>Wang, Quanjie</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Xiong, Yucheng</creatorcontrib><title>First-principles-based machine learning interatomic potential for molecular dynamics simulations of 2D lateral MoS2/WS2 heterostructures</title><title>Journal of applied physics</title><description>Understanding the mechanical and thermodynamic properties of transition-metal dichalcogenides (TMDs) and their heterostructures is pivotal for advancing the development of flexible semiconductor devices, and molecular dynamics (MD) simulation is widely applied to study these properties. However, current uncertainties persist regarding the efficacy of empirical potentials in MD simulations to accurately describe the intricate performance of complex interfaces within heterostructures. This study addresses these challenges by developing an interatomic potential based on deep neural networks and first-principles calculations. Specifically focusing on MoS2/WS2 heterostructures, our approach aims to predict Young's modulus and thermal conductivities. The potential's effectiveness is demonstrated through the validation of structural features, mechanical properties, and thermodynamic characteristics, revealing close alignment with values derived from first-principles calculations. A noteworthy finding is the substantial influence of the load direction on Young's modulus of heterostructures. Furthermore, our results highlight that the interfacial thermal conductance of the MoS2/WS2 heterostructures is considerably larger than that of graphene-based interfaces. The potential developed in this work facilitates large-scale material simulations, bridging the gap with first-principles calculations. Notably, it outperforms empirical potentials under interface conditions, establishing its significant competitiveness in simulation computations. Our approach not only contributes to a deeper understanding of TMDs and heterostructures but also presents a robust tool for the simulation of their mechanical and thermal behaviors, paving the way for advancements in flexible semiconductor device manufacturing.</description><subject>Artificial neural networks</subject><subject>First principles</subject><subject>Graphene</subject><subject>Graphical user interface</subject><subject>Heterostructures</subject><subject>Machine learning</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Molybdenum disulfide</subject><subject>Semiconductor devices</subject><subject>Simulation</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Transition metal compounds</subject><subject>Tungsten disulfide</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOAzEQRS0EEiFQ8AeWqEDaZOx92FuiQAApiCIgypVxZomjXTvY3iJ_wGdjSGqq0dw587qEXDKYMKjyaTkBDqzk4oiMGMg6E2UJx2QEwFkma1GfkrMQNgCMybweke-58SFmW2-sNtsOQ_ahAq5or_TaWKQdKm-N_aTGRvQqut5ounURbTSqo63ztHcd6qFTnq52VqV6oMH0SYjG2UBdS_kdTVlq7-izW_Lp-5LTNSbBhegHHQeP4ZyctKoLeHGIY_I2v3-dPWaLl4en2e0i05yJmFUSdF5qxgVgwVQBqlBca6lEIQEgBxS6bgWImqscFea8qGUhC1Zgy9RK5GNytZ-79e5rwBCbjRu8TSubHCqQFVRCJup6T-l0Y_DYNsmhXvldw6D5Nbopm4PRib3Zs0Gb-Pf0P_APuRB-vQ</recordid><startdate>20240528</startdate><enddate>20240528</enddate><creator>Liu, Xiangjun</creator><creator>Wang, Baolong</creator><creator>Jia, Kun</creator><creator>Wang, Quanjie</creator><creator>Wang, Di</creator><creator>Xiong, Yucheng</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0008-7947-1900</orcidid><orcidid>https://orcid.org/0000-0003-1293-8488</orcidid><orcidid>https://orcid.org/0009-0004-1104-8082</orcidid><orcidid>https://orcid.org/0000-0002-1714-6773</orcidid><orcidid>https://orcid.org/0000-0001-6023-785X</orcidid><orcidid>https://orcid.org/0009-0001-8544-2531</orcidid></search><sort><creationdate>20240528</creationdate><title>First-principles-based machine learning interatomic potential for molecular dynamics simulations of 2D lateral MoS2/WS2 heterostructures</title><author>Liu, Xiangjun ; Wang, Baolong ; Jia, Kun ; Wang, Quanjie ; Wang, Di ; Xiong, Yucheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-680c35c1270e41a40a4a2cc8a74800030e7c9f70792a3eae3249848414ef1ad73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>First principles</topic><topic>Graphene</topic><topic>Graphical user interface</topic><topic>Heterostructures</topic><topic>Machine learning</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Molybdenum disulfide</topic><topic>Semiconductor devices</topic><topic>Simulation</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Transition metal compounds</topic><topic>Tungsten disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiangjun</creatorcontrib><creatorcontrib>Wang, Baolong</creatorcontrib><creatorcontrib>Jia, Kun</creatorcontrib><creatorcontrib>Wang, Quanjie</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Xiong, Yucheng</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiangjun</au><au>Wang, Baolong</au><au>Jia, Kun</au><au>Wang, Quanjie</au><au>Wang, Di</au><au>Xiong, Yucheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles-based machine learning interatomic potential for molecular dynamics simulations of 2D lateral MoS2/WS2 heterostructures</atitle><jtitle>Journal of applied physics</jtitle><date>2024-05-28</date><risdate>2024</risdate><volume>135</volume><issue>20</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Understanding the mechanical and thermodynamic properties of transition-metal dichalcogenides (TMDs) and their heterostructures is pivotal for advancing the development of flexible semiconductor devices, and molecular dynamics (MD) simulation is widely applied to study these properties. However, current uncertainties persist regarding the efficacy of empirical potentials in MD simulations to accurately describe the intricate performance of complex interfaces within heterostructures. This study addresses these challenges by developing an interatomic potential based on deep neural networks and first-principles calculations. Specifically focusing on MoS2/WS2 heterostructures, our approach aims to predict Young's modulus and thermal conductivities. The potential's effectiveness is demonstrated through the validation of structural features, mechanical properties, and thermodynamic characteristics, revealing close alignment with values derived from first-principles calculations. A noteworthy finding is the substantial influence of the load direction on Young's modulus of heterostructures. Furthermore, our results highlight that the interfacial thermal conductance of the MoS2/WS2 heterostructures is considerably larger than that of graphene-based interfaces. The potential developed in this work facilitates large-scale material simulations, bridging the gap with first-principles calculations. Notably, it outperforms empirical potentials under interface conditions, establishing its significant competitiveness in simulation computations. Our approach not only contributes to a deeper understanding of TMDs and heterostructures but also presents a robust tool for the simulation of their mechanical and thermal behaviors, paving the way for advancements in flexible semiconductor device manufacturing.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0201527</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0008-7947-1900</orcidid><orcidid>https://orcid.org/0000-0003-1293-8488</orcidid><orcidid>https://orcid.org/0009-0004-1104-8082</orcidid><orcidid>https://orcid.org/0000-0002-1714-6773</orcidid><orcidid>https://orcid.org/0000-0001-6023-785X</orcidid><orcidid>https://orcid.org/0009-0001-8544-2531</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-05, Vol.135 (20) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0201527 |
source | Alma/SFX Local Collection |
subjects | Artificial neural networks First principles Graphene Graphical user interface Heterostructures Machine learning Mechanical properties Modulus of elasticity Molecular dynamics Molybdenum disulfide Semiconductor devices Simulation Thermal conductivity Thermodynamic properties Thermodynamics Transition metal compounds Tungsten disulfide |
title | First-principles-based machine learning interatomic potential for molecular dynamics simulations of 2D lateral MoS2/WS2 heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles-based%20machine%20learning%20interatomic%20potential%20for%20molecular%20dynamics%20simulations%20of%202D%20lateral%20MoS2/WS2%20heterostructures&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Liu,%20Xiangjun&rft.date=2024-05-28&rft.volume=135&rft.issue=20&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0201527&rft_dat=%3Cproquest_cross%3E3060860678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060860678&rft_id=info:pmid/&rfr_iscdi=true |