Flexible water-resistant bamboo-like perovskite-embedded polymer nano/microfibers exhibiting Fabry–Pérot lasing
Methylammonium lead bromide perovskite (MAPbBr3)-embedded nano- and micro-fibers are successfully fabricated by using the uniaxial electrospinning technique. Through the study of solidification and coordination between perovskite with hybrid polymers, polymethyl methacrylate, and polyacrylonitrile,...
Gespeichert in:
Veröffentlicht in: | APL materials 2024-06, Vol.12 (6), p.061107-061107-12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methylammonium lead bromide perovskite (MAPbBr3)-embedded nano- and micro-fibers are successfully fabricated by using the uniaxial electrospinning technique. Through the study of solidification and coordination between perovskite with hybrid polymers, polymethyl methacrylate, and polyacrylonitrile, the bamboo-like perovskite-embedded polymer nano/microfibers are unpredictably formed. Encapsulated in polymer, the passive perovskite-embedded polymer fibers exhibit a long-term fluorescence performance when simultaneously exposed to both water immersion and short-wavelength laser irradiation. Notably, due to the efficient gain media, the perovskite-rich region of the electrospun fiber can act as an optical microcavity. Multi-mode and single-mode lasing behaviors can be achieved via different cavity lengths. The mechanism of a microlaser within this perovskite fiber is confirmed through a Fabry–Pérot cavity, which provides an opportunity for optical components in lasers. |
---|---|
ISSN: | 2166-532X 2166-532X |
DOI: | 10.1063/5.0200465 |