Using Kondo entanglement to induce spin correlations between disconnected quantum dots

We investigate the entanglement between the spins of two quantum dots that are not simultaneously connected to the same system. Quantum entanglement among localized spins is a crucial property for the advancement of quantum computing and quantum information. Generating and controlling an entangled s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2024-04, Vol.135 (14)
1. Verfasser: Büsser, C. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page
container_title Journal of applied physics
container_volume 135
creator Büsser, C. A.
description We investigate the entanglement between the spins of two quantum dots that are not simultaneously connected to the same system. Quantum entanglement among localized spins is a crucial property for the advancement of quantum computing and quantum information. Generating and controlling an entangled state between quantum dots have garnered significant attention in recent years for this reason. In this study, we demonstrate that information about the spin orientation of a quantum dot can be preserved, utilizing Kondo entanglement, within a reservoir of electrons. Subsequently, this information can be transmitted to another dot after the initial dot has been decoupled from the reservoirs. We employ a double quantum dot system in a parallel geometry to establish the initial state, where each dot interacts with reservoirs of different symmetries. A specific phase in the couplings is chosen to induce antiferromagnetic spin correlation between the dots. The time evolution of the initial state is analyzed using the time-dependent density matrix renormalization group method. Our findings reveal that a partially entangled state between the dots can be achieved, even when they are not simultaneously connected. This entangled state arises transiently and dissipates in the stationary state. The stability of the state observed during the transient phase is demonstrated. To comprehend the details of these phenomena, we employ a canonical transformation of real space.
doi_str_mv 10.1063/5.0197241
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0197241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034827894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-a49555bcf3139bc6c725e39d10d52756623e55854ec9b9a5366193fc7b7bff63</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNdnsbDZHKX5hwUv1GrLZ2ZLSJm2SRfz3rrZnTzOHh3eYl5Brzmac1eIeZowrWVb8hEw4a1QhAdgpmTBW8qJRUp2Ti5TWjHHeCDUhnx_J-RV9C74LFH02frXB7bjQHKjz3WCRpp3z1IYYcWOyCz7RFvMXoqedSzZ4jzZjR_eD8XnY0i7kdEnOerNJeHWcU7J8elzOX4rF-_Pr_GFR2LKRuTCVAoDW9oIL1drayhJQqI6zDkoJdV0KBGigQqtaZUDUNVeit7KVbd_XYkpuDrG7GPYDpqzXYYh-vKgFE1VTykZVo7o9KBtDShF7vYtua-K35kz_tqZBH1sb7d3BJuvy37f_4B-am2yX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034827894</pqid></control><display><type>article</type><title>Using Kondo entanglement to induce spin correlations between disconnected quantum dots</title><source>Alma/SFX Local Collection</source><creator>Büsser, C. A.</creator><creatorcontrib>Büsser, C. A.</creatorcontrib><description>We investigate the entanglement between the spins of two quantum dots that are not simultaneously connected to the same system. Quantum entanglement among localized spins is a crucial property for the advancement of quantum computing and quantum information. Generating and controlling an entangled state between quantum dots have garnered significant attention in recent years for this reason. In this study, we demonstrate that information about the spin orientation of a quantum dot can be preserved, utilizing Kondo entanglement, within a reservoir of electrons. Subsequently, this information can be transmitted to another dot after the initial dot has been decoupled from the reservoirs. We employ a double quantum dot system in a parallel geometry to establish the initial state, where each dot interacts with reservoirs of different symmetries. A specific phase in the couplings is chosen to induce antiferromagnetic spin correlation between the dots. The time evolution of the initial state is analyzed using the time-dependent density matrix renormalization group method. Our findings reveal that a partially entangled state between the dots can be achieved, even when they are not simultaneously connected. This entangled state arises transiently and dissipates in the stationary state. The stability of the state observed during the transient phase is demonstrated. To comprehend the details of these phenomena, we employ a canonical transformation of real space.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0197241</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiferromagnetism ; Couplings ; Entangled states ; Quantum computing ; Quantum dots ; Quantum entanglement ; Quantum phenomena ; Reservoirs ; Time dependence ; Transformations (mathematics)</subject><ispartof>Journal of applied physics, 2024-04, Vol.135 (14)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-a49555bcf3139bc6c725e39d10d52756623e55854ec9b9a5366193fc7b7bff63</cites><orcidid>0000-0002-0353-7490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Büsser, C. A.</creatorcontrib><title>Using Kondo entanglement to induce spin correlations between disconnected quantum dots</title><title>Journal of applied physics</title><description>We investigate the entanglement between the spins of two quantum dots that are not simultaneously connected to the same system. Quantum entanglement among localized spins is a crucial property for the advancement of quantum computing and quantum information. Generating and controlling an entangled state between quantum dots have garnered significant attention in recent years for this reason. In this study, we demonstrate that information about the spin orientation of a quantum dot can be preserved, utilizing Kondo entanglement, within a reservoir of electrons. Subsequently, this information can be transmitted to another dot after the initial dot has been decoupled from the reservoirs. We employ a double quantum dot system in a parallel geometry to establish the initial state, where each dot interacts with reservoirs of different symmetries. A specific phase in the couplings is chosen to induce antiferromagnetic spin correlation between the dots. The time evolution of the initial state is analyzed using the time-dependent density matrix renormalization group method. Our findings reveal that a partially entangled state between the dots can be achieved, even when they are not simultaneously connected. This entangled state arises transiently and dissipates in the stationary state. The stability of the state observed during the transient phase is demonstrated. To comprehend the details of these phenomena, we employ a canonical transformation of real space.</description><subject>Antiferromagnetism</subject><subject>Couplings</subject><subject>Entangled states</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Reservoirs</subject><subject>Time dependence</subject><subject>Transformations (mathematics)</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNdnsbDZHKX5hwUv1GrLZ2ZLSJm2SRfz3rrZnTzOHh3eYl5Brzmac1eIeZowrWVb8hEw4a1QhAdgpmTBW8qJRUp2Ti5TWjHHeCDUhnx_J-RV9C74LFH02frXB7bjQHKjz3WCRpp3z1IYYcWOyCz7RFvMXoqedSzZ4jzZjR_eD8XnY0i7kdEnOerNJeHWcU7J8elzOX4rF-_Pr_GFR2LKRuTCVAoDW9oIL1drayhJQqI6zDkoJdV0KBGigQqtaZUDUNVeit7KVbd_XYkpuDrG7GPYDpqzXYYh-vKgFE1VTykZVo7o9KBtDShF7vYtua-K35kz_tqZBH1sb7d3BJuvy37f_4B-am2yX</recordid><startdate>20240414</startdate><enddate>20240414</enddate><creator>Büsser, C. A.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0353-7490</orcidid></search><sort><creationdate>20240414</creationdate><title>Using Kondo entanglement to induce spin correlations between disconnected quantum dots</title><author>Büsser, C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-a49555bcf3139bc6c725e39d10d52756623e55854ec9b9a5366193fc7b7bff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiferromagnetism</topic><topic>Couplings</topic><topic>Entangled states</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Reservoirs</topic><topic>Time dependence</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Büsser, C. A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Büsser, C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Kondo entanglement to induce spin correlations between disconnected quantum dots</atitle><jtitle>Journal of applied physics</jtitle><date>2024-04-14</date><risdate>2024</risdate><volume>135</volume><issue>14</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We investigate the entanglement between the spins of two quantum dots that are not simultaneously connected to the same system. Quantum entanglement among localized spins is a crucial property for the advancement of quantum computing and quantum information. Generating and controlling an entangled state between quantum dots have garnered significant attention in recent years for this reason. In this study, we demonstrate that information about the spin orientation of a quantum dot can be preserved, utilizing Kondo entanglement, within a reservoir of electrons. Subsequently, this information can be transmitted to another dot after the initial dot has been decoupled from the reservoirs. We employ a double quantum dot system in a parallel geometry to establish the initial state, where each dot interacts with reservoirs of different symmetries. A specific phase in the couplings is chosen to induce antiferromagnetic spin correlation between the dots. The time evolution of the initial state is analyzed using the time-dependent density matrix renormalization group method. Our findings reveal that a partially entangled state between the dots can be achieved, even when they are not simultaneously connected. This entangled state arises transiently and dissipates in the stationary state. The stability of the state observed during the transient phase is demonstrated. To comprehend the details of these phenomena, we employ a canonical transformation of real space.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0197241</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0353-7490</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-04, Vol.135 (14)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0197241
source Alma/SFX Local Collection
subjects Antiferromagnetism
Couplings
Entangled states
Quantum computing
Quantum dots
Quantum entanglement
Quantum phenomena
Reservoirs
Time dependence
Transformations (mathematics)
title Using Kondo entanglement to induce spin correlations between disconnected quantum dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Kondo%20entanglement%20to%20induce%20spin%20correlations%20between%20disconnected%20quantum%20dots&rft.jtitle=Journal%20of%20applied%20physics&rft.au=B%C3%BCsser,%20C.%20A.&rft.date=2024-04-14&rft.volume=135&rft.issue=14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0197241&rft_dat=%3Cproquest_cross%3E3034827894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034827894&rft_id=info:pmid/&rfr_iscdi=true