Using Kondo entanglement to induce spin correlations between disconnected quantum dots
We investigate the entanglement between the spins of two quantum dots that are not simultaneously connected to the same system. Quantum entanglement among localized spins is a crucial property for the advancement of quantum computing and quantum information. Generating and controlling an entangled s...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2024-04, Vol.135 (14) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 135 |
creator | Büsser, C. A. |
description | We investigate the entanglement between the spins of two quantum dots that are not simultaneously connected to the same system. Quantum entanglement among localized spins is a crucial property for the advancement of quantum computing and quantum information. Generating and controlling an entangled state between quantum dots have garnered significant attention in recent years for this reason. In this study, we demonstrate that information about the spin orientation of a quantum dot can be preserved, utilizing Kondo entanglement, within a reservoir of electrons. Subsequently, this information can be transmitted to another dot after the initial dot has been decoupled from the reservoirs. We employ a double quantum dot system in a parallel geometry to establish the initial state, where each dot interacts with reservoirs of different symmetries. A specific phase in the couplings is chosen to induce antiferromagnetic spin correlation between the dots. The time evolution of the initial state is analyzed using the time-dependent density matrix renormalization group method. Our findings reveal that a partially entangled state between the dots can be achieved, even when they are not simultaneously connected. This entangled state arises transiently and dissipates in the stationary state. The stability of the state observed during the transient phase is demonstrated. To comprehend the details of these phenomena, we employ a canonical transformation of real space. |
doi_str_mv | 10.1063/5.0197241 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0197241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034827894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-a49555bcf3139bc6c725e39d10d52756623e55854ec9b9a5366193fc7b7bff63</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNdnsbDZHKX5hwUv1GrLZ2ZLSJm2SRfz3rrZnTzOHh3eYl5Brzmac1eIeZowrWVb8hEw4a1QhAdgpmTBW8qJRUp2Ti5TWjHHeCDUhnx_J-RV9C74LFH02frXB7bjQHKjz3WCRpp3z1IYYcWOyCz7RFvMXoqedSzZ4jzZjR_eD8XnY0i7kdEnOerNJeHWcU7J8elzOX4rF-_Pr_GFR2LKRuTCVAoDW9oIL1drayhJQqI6zDkoJdV0KBGigQqtaZUDUNVeit7KVbd_XYkpuDrG7GPYDpqzXYYh-vKgFE1VTykZVo7o9KBtDShF7vYtua-K35kz_tqZBH1sb7d3BJuvy37f_4B-am2yX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034827894</pqid></control><display><type>article</type><title>Using Kondo entanglement to induce spin correlations between disconnected quantum dots</title><source>Alma/SFX Local Collection</source><creator>Büsser, C. A.</creator><creatorcontrib>Büsser, C. A.</creatorcontrib><description>We investigate the entanglement between the spins of two quantum dots that are not simultaneously connected to the same system. Quantum entanglement among localized spins is a crucial property for the advancement of quantum computing and quantum information. Generating and controlling an entangled state between quantum dots have garnered significant attention in recent years for this reason. In this study, we demonstrate that information about the spin orientation of a quantum dot can be preserved, utilizing Kondo entanglement, within a reservoir of electrons. Subsequently, this information can be transmitted to another dot after the initial dot has been decoupled from the reservoirs. We employ a double quantum dot system in a parallel geometry to establish the initial state, where each dot interacts with reservoirs of different symmetries. A specific phase in the couplings is chosen to induce antiferromagnetic spin correlation between the dots. The time evolution of the initial state is analyzed using the time-dependent density matrix renormalization group method. Our findings reveal that a partially entangled state between the dots can be achieved, even when they are not simultaneously connected. This entangled state arises transiently and dissipates in the stationary state. The stability of the state observed during the transient phase is demonstrated. To comprehend the details of these phenomena, we employ a canonical transformation of real space.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0197241</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiferromagnetism ; Couplings ; Entangled states ; Quantum computing ; Quantum dots ; Quantum entanglement ; Quantum phenomena ; Reservoirs ; Time dependence ; Transformations (mathematics)</subject><ispartof>Journal of applied physics, 2024-04, Vol.135 (14)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-a49555bcf3139bc6c725e39d10d52756623e55854ec9b9a5366193fc7b7bff63</cites><orcidid>0000-0002-0353-7490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Büsser, C. A.</creatorcontrib><title>Using Kondo entanglement to induce spin correlations between disconnected quantum dots</title><title>Journal of applied physics</title><description>We investigate the entanglement between the spins of two quantum dots that are not simultaneously connected to the same system. Quantum entanglement among localized spins is a crucial property for the advancement of quantum computing and quantum information. Generating and controlling an entangled state between quantum dots have garnered significant attention in recent years for this reason. In this study, we demonstrate that information about the spin orientation of a quantum dot can be preserved, utilizing Kondo entanglement, within a reservoir of electrons. Subsequently, this information can be transmitted to another dot after the initial dot has been decoupled from the reservoirs. We employ a double quantum dot system in a parallel geometry to establish the initial state, where each dot interacts with reservoirs of different symmetries. A specific phase in the couplings is chosen to induce antiferromagnetic spin correlation between the dots. The time evolution of the initial state is analyzed using the time-dependent density matrix renormalization group method. Our findings reveal that a partially entangled state between the dots can be achieved, even when they are not simultaneously connected. This entangled state arises transiently and dissipates in the stationary state. The stability of the state observed during the transient phase is demonstrated. To comprehend the details of these phenomena, we employ a canonical transformation of real space.</description><subject>Antiferromagnetism</subject><subject>Couplings</subject><subject>Entangled states</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Reservoirs</subject><subject>Time dependence</subject><subject>Transformations (mathematics)</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNdnsbDZHKX5hwUv1GrLZ2ZLSJm2SRfz3rrZnTzOHh3eYl5Brzmac1eIeZowrWVb8hEw4a1QhAdgpmTBW8qJRUp2Ti5TWjHHeCDUhnx_J-RV9C74LFH02frXB7bjQHKjz3WCRpp3z1IYYcWOyCz7RFvMXoqedSzZ4jzZjR_eD8XnY0i7kdEnOerNJeHWcU7J8elzOX4rF-_Pr_GFR2LKRuTCVAoDW9oIL1drayhJQqI6zDkoJdV0KBGigQqtaZUDUNVeit7KVbd_XYkpuDrG7GPYDpqzXYYh-vKgFE1VTykZVo7o9KBtDShF7vYtua-K35kz_tqZBH1sb7d3BJuvy37f_4B-am2yX</recordid><startdate>20240414</startdate><enddate>20240414</enddate><creator>Büsser, C. A.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0353-7490</orcidid></search><sort><creationdate>20240414</creationdate><title>Using Kondo entanglement to induce spin correlations between disconnected quantum dots</title><author>Büsser, C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-a49555bcf3139bc6c725e39d10d52756623e55854ec9b9a5366193fc7b7bff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiferromagnetism</topic><topic>Couplings</topic><topic>Entangled states</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Reservoirs</topic><topic>Time dependence</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Büsser, C. A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Büsser, C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Kondo entanglement to induce spin correlations between disconnected quantum dots</atitle><jtitle>Journal of applied physics</jtitle><date>2024-04-14</date><risdate>2024</risdate><volume>135</volume><issue>14</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We investigate the entanglement between the spins of two quantum dots that are not simultaneously connected to the same system. Quantum entanglement among localized spins is a crucial property for the advancement of quantum computing and quantum information. Generating and controlling an entangled state between quantum dots have garnered significant attention in recent years for this reason. In this study, we demonstrate that information about the spin orientation of a quantum dot can be preserved, utilizing Kondo entanglement, within a reservoir of electrons. Subsequently, this information can be transmitted to another dot after the initial dot has been decoupled from the reservoirs. We employ a double quantum dot system in a parallel geometry to establish the initial state, where each dot interacts with reservoirs of different symmetries. A specific phase in the couplings is chosen to induce antiferromagnetic spin correlation between the dots. The time evolution of the initial state is analyzed using the time-dependent density matrix renormalization group method. Our findings reveal that a partially entangled state between the dots can be achieved, even when they are not simultaneously connected. This entangled state arises transiently and dissipates in the stationary state. The stability of the state observed during the transient phase is demonstrated. To comprehend the details of these phenomena, we employ a canonical transformation of real space.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0197241</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0353-7490</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-04, Vol.135 (14) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0197241 |
source | Alma/SFX Local Collection |
subjects | Antiferromagnetism Couplings Entangled states Quantum computing Quantum dots Quantum entanglement Quantum phenomena Reservoirs Time dependence Transformations (mathematics) |
title | Using Kondo entanglement to induce spin correlations between disconnected quantum dots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Kondo%20entanglement%20to%20induce%20spin%20correlations%20between%20disconnected%20quantum%20dots&rft.jtitle=Journal%20of%20applied%20physics&rft.au=B%C3%BCsser,%20C.%20A.&rft.date=2024-04-14&rft.volume=135&rft.issue=14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0197241&rft_dat=%3Cproquest_cross%3E3034827894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034827894&rft_id=info:pmid/&rfr_iscdi=true |