Time-varying coding digital double-layered Huygens' metasurface for high-efficiency harmonic frequency conversion

Time-varying metasurfaces offer an efficient means of controlling nonlinear harmonics by manipulating component geometries and modulating signals. This ability renders them valuable across various fields, such as wireless communication, radar sensing, and biological monitoring. However, most of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-03, Vol.124 (11)
Hauptverfasser: Li, Feng, Wu, Chao, Qiu, Chunqiao, Xu, Quan, Zhu, Hongyu, Li, Quan, Zhang, Zhengren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Applied physics letters
container_volume 124
creator Li, Feng
Wu, Chao
Qiu, Chunqiao
Xu, Quan
Zhu, Hongyu
Li, Quan
Zhang, Zhengren
description Time-varying metasurfaces offer an efficient means of controlling nonlinear harmonics by manipulating component geometries and modulating signals. This ability renders them valuable across various fields, such as wireless communication, radar sensing, and biological monitoring. However, most of the energy in time-varying metasurfaces is concentrated in the fundamental wave, as well as scattered at various harmonic orders, which reduces the energy efficiency at the desired harmonic. Existing approaches have employed time-varying coding digital metasurfaces to achieve efficient harmonic conversion but are primarily designed for reflection. Reflection-based designs require a feed source to excite the metasurface, which can cause certain shielding effects and limit their application in specific scenarios. Thus, designing transmissive time-varying coding digital metasurfaces for efficient harmonic conversion is currently an urgent problem that needs to be addressed. To solve this problem, this paper develops a time-varying coding digital double-layered Huygens' metasurface, which achieves efficient conversion of the desired transmitted harmonics. The unit structure of the metasurface consists of a pair of reverse-symmetric split rings located on the upper and lower sides of a dielectric substrate, enabling nearly non-reflective Huygens' resonance. Based on a continuous periodic phase modulation strategy, we achieved efficient conversion of transmitted harmonics by loading a time-varying voltage (phase) modulation signal with a 5-bit resolution bit width onto the designed double-layered Huygens' metasurface. This study presents a solution for designing a transmissive time-varying coding digital metasurface to achieve efficient conversion of harmonics, thereby enhancing the application capabilities of time-varying coding digital metasurfaces.
doi_str_mv 10.1063/5.0196310
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0196310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954998242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-c563c0f284c2ccde64e80f0b0b8ad908aac63d60dbaf647cd212003e7565eae93</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFYP_oOAB1HYuh_JJjlKUSsUvNRz2OzOpluSbLubFPLv3VrPnoYZHmbmfRC6p2RBieAv2YLQUnBKLtCMkjzHnNLiEs0IIRyLMqPX6CaEXWwzxvkMHTa2A3yUfrJ9kyinT0Xbxg6yTbQb6xZwKyfwoJPVODXQh8ekg0GG0RupIDHOJ1vbbDEYY5WFXk3JVvrO9VYlxsNh_B0p1x_BB-v6W3RlZBvg7q_O0ff722a5wuuvj8_l6xorVuQDVpngihhWpIoppUGkUBBDalIXUpekkFIJrgXRtTQizZVmlMWMkGciAwkln6OH8969d_GJMFQ7N_o-nqxYmaVlWbCURerpTCnvQvBgqr23XdRRUVKdjFZZ9Wc0ss9nNqioZ4hZ_oF_ALQ9d90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954998242</pqid></control><display><type>article</type><title>Time-varying coding digital double-layered Huygens' metasurface for high-efficiency harmonic frequency conversion</title><source>AIP Journals Complete</source><creator>Li, Feng ; Wu, Chao ; Qiu, Chunqiao ; Xu, Quan ; Zhu, Hongyu ; Li, Quan ; Zhang, Zhengren</creator><creatorcontrib>Li, Feng ; Wu, Chao ; Qiu, Chunqiao ; Xu, Quan ; Zhu, Hongyu ; Li, Quan ; Zhang, Zhengren</creatorcontrib><description>Time-varying metasurfaces offer an efficient means of controlling nonlinear harmonics by manipulating component geometries and modulating signals. This ability renders them valuable across various fields, such as wireless communication, radar sensing, and biological monitoring. However, most of the energy in time-varying metasurfaces is concentrated in the fundamental wave, as well as scattered at various harmonic orders, which reduces the energy efficiency at the desired harmonic. Existing approaches have employed time-varying coding digital metasurfaces to achieve efficient harmonic conversion but are primarily designed for reflection. Reflection-based designs require a feed source to excite the metasurface, which can cause certain shielding effects and limit their application in specific scenarios. Thus, designing transmissive time-varying coding digital metasurfaces for efficient harmonic conversion is currently an urgent problem that needs to be addressed. To solve this problem, this paper develops a time-varying coding digital double-layered Huygens' metasurface, which achieves efficient conversion of the desired transmitted harmonics. The unit structure of the metasurface consists of a pair of reverse-symmetric split rings located on the upper and lower sides of a dielectric substrate, enabling nearly non-reflective Huygens' resonance. Based on a continuous periodic phase modulation strategy, we achieved efficient conversion of transmitted harmonics by loading a time-varying voltage (phase) modulation signal with a 5-bit resolution bit width onto the designed double-layered Huygens' metasurface. This study presents a solution for designing a transmissive time-varying coding digital metasurface to achieve efficient conversion of harmonics, thereby enhancing the application capabilities of time-varying coding digital metasurfaces.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0196310</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Biomonitoring ; Coding ; Energy conversion efficiency ; Harmonics ; Metasurfaces ; Nonlinear control ; Phase modulation ; Rings (mathematics) ; Substrates ; Wireless communications</subject><ispartof>Applied physics letters, 2024-03, Vol.124 (11)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-c563c0f284c2ccde64e80f0b0b8ad908aac63d60dbaf647cd212003e7565eae93</cites><orcidid>0000-0002-9980-6885 ; 0000-0001-9246-3253 ; 0000-0002-4889-0191 ; 0009-0007-3931-7055 ; 0000-0002-3689-7089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0196310$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Qiu, Chunqiao</creatorcontrib><creatorcontrib>Xu, Quan</creatorcontrib><creatorcontrib>Zhu, Hongyu</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Zhang, Zhengren</creatorcontrib><title>Time-varying coding digital double-layered Huygens' metasurface for high-efficiency harmonic frequency conversion</title><title>Applied physics letters</title><description>Time-varying metasurfaces offer an efficient means of controlling nonlinear harmonics by manipulating component geometries and modulating signals. This ability renders them valuable across various fields, such as wireless communication, radar sensing, and biological monitoring. However, most of the energy in time-varying metasurfaces is concentrated in the fundamental wave, as well as scattered at various harmonic orders, which reduces the energy efficiency at the desired harmonic. Existing approaches have employed time-varying coding digital metasurfaces to achieve efficient harmonic conversion but are primarily designed for reflection. Reflection-based designs require a feed source to excite the metasurface, which can cause certain shielding effects and limit their application in specific scenarios. Thus, designing transmissive time-varying coding digital metasurfaces for efficient harmonic conversion is currently an urgent problem that needs to be addressed. To solve this problem, this paper develops a time-varying coding digital double-layered Huygens' metasurface, which achieves efficient conversion of the desired transmitted harmonics. The unit structure of the metasurface consists of a pair of reverse-symmetric split rings located on the upper and lower sides of a dielectric substrate, enabling nearly non-reflective Huygens' resonance. Based on a continuous periodic phase modulation strategy, we achieved efficient conversion of transmitted harmonics by loading a time-varying voltage (phase) modulation signal with a 5-bit resolution bit width onto the designed double-layered Huygens' metasurface. This study presents a solution for designing a transmissive time-varying coding digital metasurface to achieve efficient conversion of harmonics, thereby enhancing the application capabilities of time-varying coding digital metasurfaces.</description><subject>Biomonitoring</subject><subject>Coding</subject><subject>Energy conversion efficiency</subject><subject>Harmonics</subject><subject>Metasurfaces</subject><subject>Nonlinear control</subject><subject>Phase modulation</subject><subject>Rings (mathematics)</subject><subject>Substrates</subject><subject>Wireless communications</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFYP_oOAB1HYuh_JJjlKUSsUvNRz2OzOpluSbLubFPLv3VrPnoYZHmbmfRC6p2RBieAv2YLQUnBKLtCMkjzHnNLiEs0IIRyLMqPX6CaEXWwzxvkMHTa2A3yUfrJ9kyinT0Xbxg6yTbQb6xZwKyfwoJPVODXQh8ekg0GG0RupIDHOJ1vbbDEYY5WFXk3JVvrO9VYlxsNh_B0p1x_BB-v6W3RlZBvg7q_O0ff722a5wuuvj8_l6xorVuQDVpngihhWpIoppUGkUBBDalIXUpekkFIJrgXRtTQizZVmlMWMkGciAwkln6OH8969d_GJMFQ7N_o-nqxYmaVlWbCURerpTCnvQvBgqr23XdRRUVKdjFZZ9Wc0ss9nNqioZ4hZ_oF_ALQ9d90</recordid><startdate>20240311</startdate><enddate>20240311</enddate><creator>Li, Feng</creator><creator>Wu, Chao</creator><creator>Qiu, Chunqiao</creator><creator>Xu, Quan</creator><creator>Zhu, Hongyu</creator><creator>Li, Quan</creator><creator>Zhang, Zhengren</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9980-6885</orcidid><orcidid>https://orcid.org/0000-0001-9246-3253</orcidid><orcidid>https://orcid.org/0000-0002-4889-0191</orcidid><orcidid>https://orcid.org/0009-0007-3931-7055</orcidid><orcidid>https://orcid.org/0000-0002-3689-7089</orcidid></search><sort><creationdate>20240311</creationdate><title>Time-varying coding digital double-layered Huygens' metasurface for high-efficiency harmonic frequency conversion</title><author>Li, Feng ; Wu, Chao ; Qiu, Chunqiao ; Xu, Quan ; Zhu, Hongyu ; Li, Quan ; Zhang, Zhengren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-c563c0f284c2ccde64e80f0b0b8ad908aac63d60dbaf647cd212003e7565eae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomonitoring</topic><topic>Coding</topic><topic>Energy conversion efficiency</topic><topic>Harmonics</topic><topic>Metasurfaces</topic><topic>Nonlinear control</topic><topic>Phase modulation</topic><topic>Rings (mathematics)</topic><topic>Substrates</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Qiu, Chunqiao</creatorcontrib><creatorcontrib>Xu, Quan</creatorcontrib><creatorcontrib>Zhu, Hongyu</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Zhang, Zhengren</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Feng</au><au>Wu, Chao</au><au>Qiu, Chunqiao</au><au>Xu, Quan</au><au>Zhu, Hongyu</au><au>Li, Quan</au><au>Zhang, Zhengren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-varying coding digital double-layered Huygens' metasurface for high-efficiency harmonic frequency conversion</atitle><jtitle>Applied physics letters</jtitle><date>2024-03-11</date><risdate>2024</risdate><volume>124</volume><issue>11</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Time-varying metasurfaces offer an efficient means of controlling nonlinear harmonics by manipulating component geometries and modulating signals. This ability renders them valuable across various fields, such as wireless communication, radar sensing, and biological monitoring. However, most of the energy in time-varying metasurfaces is concentrated in the fundamental wave, as well as scattered at various harmonic orders, which reduces the energy efficiency at the desired harmonic. Existing approaches have employed time-varying coding digital metasurfaces to achieve efficient harmonic conversion but are primarily designed for reflection. Reflection-based designs require a feed source to excite the metasurface, which can cause certain shielding effects and limit their application in specific scenarios. Thus, designing transmissive time-varying coding digital metasurfaces for efficient harmonic conversion is currently an urgent problem that needs to be addressed. To solve this problem, this paper develops a time-varying coding digital double-layered Huygens' metasurface, which achieves efficient conversion of the desired transmitted harmonics. The unit structure of the metasurface consists of a pair of reverse-symmetric split rings located on the upper and lower sides of a dielectric substrate, enabling nearly non-reflective Huygens' resonance. Based on a continuous periodic phase modulation strategy, we achieved efficient conversion of transmitted harmonics by loading a time-varying voltage (phase) modulation signal with a 5-bit resolution bit width onto the designed double-layered Huygens' metasurface. This study presents a solution for designing a transmissive time-varying coding digital metasurface to achieve efficient conversion of harmonics, thereby enhancing the application capabilities of time-varying coding digital metasurfaces.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0196310</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9980-6885</orcidid><orcidid>https://orcid.org/0000-0001-9246-3253</orcidid><orcidid>https://orcid.org/0000-0002-4889-0191</orcidid><orcidid>https://orcid.org/0009-0007-3931-7055</orcidid><orcidid>https://orcid.org/0000-0002-3689-7089</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-03, Vol.124 (11)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0196310
source AIP Journals Complete
subjects Biomonitoring
Coding
Energy conversion efficiency
Harmonics
Metasurfaces
Nonlinear control
Phase modulation
Rings (mathematics)
Substrates
Wireless communications
title Time-varying coding digital double-layered Huygens' metasurface for high-efficiency harmonic frequency conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-varying%20coding%20digital%20double-layered%20Huygens'%20metasurface%20for%20high-efficiency%20harmonic%20frequency%20conversion&rft.jtitle=Applied%20physics%20letters&rft.au=Li,%20Feng&rft.date=2024-03-11&rft.volume=124&rft.issue=11&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0196310&rft_dat=%3Cproquest_cross%3E2954998242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2954998242&rft_id=info:pmid/&rfr_iscdi=true