Nonadiabatic transitions during a passage near a critical point

The passage through a critical point of a many-body quantum system leads to abundant nonadiabatic excitations. Here, we explore a regime, in which the critical point is not crossed although the system is passing slowly very close to it. We show that the leading exponent for the excitation probabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-02, Vol.160 (7)
Hauptverfasser: Sinitsyn, Nikolai A., Sadhasivam, Vijay Ganesh, Suzuki, Fumika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title The Journal of chemical physics
container_volume 160
creator Sinitsyn, Nikolai A.
Sadhasivam, Vijay Ganesh
Suzuki, Fumika
description The passage through a critical point of a many-body quantum system leads to abundant nonadiabatic excitations. Here, we explore a regime, in which the critical point is not crossed although the system is passing slowly very close to it. We show that the leading exponent for the excitation probability can then be obtained by standard arguments of the Dykhne formula, but the exponential prefactor is no longer simple and behaves as a power law on the characteristic transition rate. We derive this prefactor for the nonlinear Landau–Zener model by adjusting Dykhne’s approach. Then, we introduce an exactly solvable model of the transition near a critical point in the Stark ladder. We derive the number of excitations for it without approximations and find qualitatively similar results for the excitation scaling.
doi_str_mv 10.1063/5.0191933
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0191933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927713751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-c106bd02c037b1513612ece936bcaaf8305e5a1b96f2ffb58cc0cdb03433c0a33</originalsourceid><addsrcrecordid>eNp90E-LFDEQBfAgijs7evALSKMXFXqtpLrTnZPIsv6BRS96DtXV6TXLTDIm6YPf3gwzevDgKRT8eLw8IZ5JuJKg8W1_BdJIg_hAbCSMph20gYdiA6BkazToC3GZ8z0AyEF1j8UFjqg7kLgR777EQLOniYrnpiQK2RcfQ27mNflw11BzoJzpzjXBUaonpwqYds0h-lCeiEcL7bJ7en634vuHm2_Xn9rbrx8_X7-_bbmTUFquPacZFAMOk-wlaqkcO4N6YqJlROhdT3IyelHLMvUjM_A8AXaIDIS4FS9OuTEXbzP74vgHxxAcF6tQ9lr3Fb06oUOKP1eXi937zG63o-Dimq0yalTdOBpd6ct_6H1cU6hfOKphkDjUllvx-qQ4xZyTW-wh-T2lX1aCPU5ve3uevtrn58R12rv5r_yzdQVvTuDYno4j_yftN2J_iRY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927713751</pqid></control><display><type>article</type><title>Nonadiabatic transitions during a passage near a critical point</title><source>AIP Journals Complete</source><creator>Sinitsyn, Nikolai A. ; Sadhasivam, Vijay Ganesh ; Suzuki, Fumika</creator><creatorcontrib>Sinitsyn, Nikolai A. ; Sadhasivam, Vijay Ganesh ; Suzuki, Fumika ; US Department of Energy (USDOE), Washington, DC (United States). Office of Science, Advanced Scientific Computing Research (ASCR) ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The passage through a critical point of a many-body quantum system leads to abundant nonadiabatic excitations. Here, we explore a regime, in which the critical point is not crossed although the system is passing slowly very close to it. We show that the leading exponent for the excitation probability can then be obtained by standard arguments of the Dykhne formula, but the exponential prefactor is no longer simple and behaves as a power law on the characteristic transition rate. We derive this prefactor for the nonlinear Landau–Zener model by adjusting Dykhne’s approach. Then, we introduce an exactly solvable model of the transition near a critical point in the Stark ladder. We derive the number of excitations for it without approximations and find qualitatively similar results for the excitation scaling.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0191933</identifier><identifier>PMID: 38364013</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>adiabatic theorem ; Bose-Einstein condensate ; Critical point ; Excitation ; ferromagnetism ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; phase transitions ; quantum phase transition ; Quantum theory</subject><ispartof>The Journal of chemical physics, 2024-02, Vol.160 (7)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-c106bd02c037b1513612ece936bcaaf8305e5a1b96f2ffb58cc0cdb03433c0a33</citedby><cites>FETCH-LOGICAL-c410t-c106bd02c037b1513612ece936bcaaf8305e5a1b96f2ffb58cc0cdb03433c0a33</cites><orcidid>0000-0002-0746-0400 ; 0000-0003-4982-5970 ; 0000-0002-7542-0961 ; 0000000275420961 ; 0000000207460400 ; 0000000349825970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0191933$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38364013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2315665$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinitsyn, Nikolai A.</creatorcontrib><creatorcontrib>Sadhasivam, Vijay Ganesh</creatorcontrib><creatorcontrib>Suzuki, Fumika</creatorcontrib><creatorcontrib>US Department of Energy (USDOE), Washington, DC (United States). Office of Science, Advanced Scientific Computing Research (ASCR)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Nonadiabatic transitions during a passage near a critical point</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The passage through a critical point of a many-body quantum system leads to abundant nonadiabatic excitations. Here, we explore a regime, in which the critical point is not crossed although the system is passing slowly very close to it. We show that the leading exponent for the excitation probability can then be obtained by standard arguments of the Dykhne formula, but the exponential prefactor is no longer simple and behaves as a power law on the characteristic transition rate. We derive this prefactor for the nonlinear Landau–Zener model by adjusting Dykhne’s approach. Then, we introduce an exactly solvable model of the transition near a critical point in the Stark ladder. We derive the number of excitations for it without approximations and find qualitatively similar results for the excitation scaling.</description><subject>adiabatic theorem</subject><subject>Bose-Einstein condensate</subject><subject>Critical point</subject><subject>Excitation</subject><subject>ferromagnetism</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>phase transitions</subject><subject>quantum phase transition</subject><subject>Quantum theory</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E-LFDEQBfAgijs7evALSKMXFXqtpLrTnZPIsv6BRS96DtXV6TXLTDIm6YPf3gwzevDgKRT8eLw8IZ5JuJKg8W1_BdJIg_hAbCSMph20gYdiA6BkazToC3GZ8z0AyEF1j8UFjqg7kLgR777EQLOniYrnpiQK2RcfQ27mNflw11BzoJzpzjXBUaonpwqYds0h-lCeiEcL7bJ7en634vuHm2_Xn9rbrx8_X7-_bbmTUFquPacZFAMOk-wlaqkcO4N6YqJlROhdT3IyelHLMvUjM_A8AXaIDIS4FS9OuTEXbzP74vgHxxAcF6tQ9lr3Fb06oUOKP1eXi937zG63o-Dimq0yalTdOBpd6ct_6H1cU6hfOKphkDjUllvx-qQ4xZyTW-wh-T2lX1aCPU5ve3uevtrn58R12rv5r_yzdQVvTuDYno4j_yftN2J_iRY</recordid><startdate>20240221</startdate><enddate>20240221</enddate><creator>Sinitsyn, Nikolai A.</creator><creator>Sadhasivam, Vijay Ganesh</creator><creator>Suzuki, Fumika</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0746-0400</orcidid><orcidid>https://orcid.org/0000-0003-4982-5970</orcidid><orcidid>https://orcid.org/0000-0002-7542-0961</orcidid><orcidid>https://orcid.org/0000000275420961</orcidid><orcidid>https://orcid.org/0000000207460400</orcidid><orcidid>https://orcid.org/0000000349825970</orcidid></search><sort><creationdate>20240221</creationdate><title>Nonadiabatic transitions during a passage near a critical point</title><author>Sinitsyn, Nikolai A. ; Sadhasivam, Vijay Ganesh ; Suzuki, Fumika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-c106bd02c037b1513612ece936bcaaf8305e5a1b96f2ffb58cc0cdb03433c0a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adiabatic theorem</topic><topic>Bose-Einstein condensate</topic><topic>Critical point</topic><topic>Excitation</topic><topic>ferromagnetism</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>phase transitions</topic><topic>quantum phase transition</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinitsyn, Nikolai A.</creatorcontrib><creatorcontrib>Sadhasivam, Vijay Ganesh</creatorcontrib><creatorcontrib>Suzuki, Fumika</creatorcontrib><creatorcontrib>US Department of Energy (USDOE), Washington, DC (United States). Office of Science, Advanced Scientific Computing Research (ASCR)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinitsyn, Nikolai A.</au><au>Sadhasivam, Vijay Ganesh</au><au>Suzuki, Fumika</au><aucorp>US Department of Energy (USDOE), Washington, DC (United States). Office of Science, Advanced Scientific Computing Research (ASCR)</aucorp><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonadiabatic transitions during a passage near a critical point</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-02-21</date><risdate>2024</risdate><volume>160</volume><issue>7</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The passage through a critical point of a many-body quantum system leads to abundant nonadiabatic excitations. Here, we explore a regime, in which the critical point is not crossed although the system is passing slowly very close to it. We show that the leading exponent for the excitation probability can then be obtained by standard arguments of the Dykhne formula, but the exponential prefactor is no longer simple and behaves as a power law on the characteristic transition rate. We derive this prefactor for the nonlinear Landau–Zener model by adjusting Dykhne’s approach. Then, we introduce an exactly solvable model of the transition near a critical point in the Stark ladder. We derive the number of excitations for it without approximations and find qualitatively similar results for the excitation scaling.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38364013</pmid><doi>10.1063/5.0191933</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0746-0400</orcidid><orcidid>https://orcid.org/0000-0003-4982-5970</orcidid><orcidid>https://orcid.org/0000-0002-7542-0961</orcidid><orcidid>https://orcid.org/0000000275420961</orcidid><orcidid>https://orcid.org/0000000207460400</orcidid><orcidid>https://orcid.org/0000000349825970</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-02, Vol.160 (7)
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0191933
source AIP Journals Complete
subjects adiabatic theorem
Bose-Einstein condensate
Critical point
Excitation
ferromagnetism
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
phase transitions
quantum phase transition
Quantum theory
title Nonadiabatic transitions during a passage near a critical point
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonadiabatic%20transitions%20during%20a%20passage%20near%20a%20critical%20point&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Sinitsyn,%20Nikolai%20A.&rft.aucorp=US%20Department%20of%20Energy%20(USDOE),%20Washington,%20DC%20(United%20States).%20Office%20of%20Science,%20Advanced%20Scientific%20Computing%20Research%20(ASCR)&rft.date=2024-02-21&rft.volume=160&rft.issue=7&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0191933&rft_dat=%3Cproquest_cross%3E2927713751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927713751&rft_id=info:pmid/38364013&rfr_iscdi=true