Nonadiabatic transitions during a passage near a critical point
The passage through a critical point of a many-body quantum system leads to abundant nonadiabatic excitations. Here, we explore a regime, in which the critical point is not crossed although the system is passing slowly very close to it. We show that the leading exponent for the excitation probabilit...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2024-02, Vol.160 (7) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 160 |
creator | Sinitsyn, Nikolai A. Sadhasivam, Vijay Ganesh Suzuki, Fumika |
description | The passage through a critical point of a many-body quantum system leads to abundant nonadiabatic excitations. Here, we explore a regime, in which the critical point is not crossed although the system is passing slowly very close to it. We show that the leading exponent for the excitation probability can then be obtained by standard arguments of the Dykhne formula, but the exponential prefactor is no longer simple and behaves as a power law on the characteristic transition rate. We derive this prefactor for the nonlinear Landau–Zener model by adjusting Dykhne’s approach. Then, we introduce an exactly solvable model of the transition near a critical point in the Stark ladder. We derive the number of excitations for it without approximations and find qualitatively similar results for the excitation scaling. |
doi_str_mv | 10.1063/5.0191933 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0191933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927713751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-c106bd02c037b1513612ece936bcaaf8305e5a1b96f2ffb58cc0cdb03433c0a33</originalsourceid><addsrcrecordid>eNp90E-LFDEQBfAgijs7evALSKMXFXqtpLrTnZPIsv6BRS96DtXV6TXLTDIm6YPf3gwzevDgKRT8eLw8IZ5JuJKg8W1_BdJIg_hAbCSMph20gYdiA6BkazToC3GZ8z0AyEF1j8UFjqg7kLgR777EQLOniYrnpiQK2RcfQ27mNflw11BzoJzpzjXBUaonpwqYds0h-lCeiEcL7bJ7en634vuHm2_Xn9rbrx8_X7-_bbmTUFquPacZFAMOk-wlaqkcO4N6YqJlROhdT3IyelHLMvUjM_A8AXaIDIS4FS9OuTEXbzP74vgHxxAcF6tQ9lr3Fb06oUOKP1eXi937zG63o-Dimq0yalTdOBpd6ct_6H1cU6hfOKphkDjUllvx-qQ4xZyTW-wh-T2lX1aCPU5ve3uevtrn58R12rv5r_yzdQVvTuDYno4j_yftN2J_iRY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927713751</pqid></control><display><type>article</type><title>Nonadiabatic transitions during a passage near a critical point</title><source>AIP Journals Complete</source><creator>Sinitsyn, Nikolai A. ; Sadhasivam, Vijay Ganesh ; Suzuki, Fumika</creator><creatorcontrib>Sinitsyn, Nikolai A. ; Sadhasivam, Vijay Ganesh ; Suzuki, Fumika ; US Department of Energy (USDOE), Washington, DC (United States). Office of Science, Advanced Scientific Computing Research (ASCR) ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The passage through a critical point of a many-body quantum system leads to abundant nonadiabatic excitations. Here, we explore a regime, in which the critical point is not crossed although the system is passing slowly very close to it. We show that the leading exponent for the excitation probability can then be obtained by standard arguments of the Dykhne formula, but the exponential prefactor is no longer simple and behaves as a power law on the characteristic transition rate. We derive this prefactor for the nonlinear Landau–Zener model by adjusting Dykhne’s approach. Then, we introduce an exactly solvable model of the transition near a critical point in the Stark ladder. We derive the number of excitations for it without approximations and find qualitatively similar results for the excitation scaling.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0191933</identifier><identifier>PMID: 38364013</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>adiabatic theorem ; Bose-Einstein condensate ; Critical point ; Excitation ; ferromagnetism ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; phase transitions ; quantum phase transition ; Quantum theory</subject><ispartof>The Journal of chemical physics, 2024-02, Vol.160 (7)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-c106bd02c037b1513612ece936bcaaf8305e5a1b96f2ffb58cc0cdb03433c0a33</citedby><cites>FETCH-LOGICAL-c410t-c106bd02c037b1513612ece936bcaaf8305e5a1b96f2ffb58cc0cdb03433c0a33</cites><orcidid>0000-0002-0746-0400 ; 0000-0003-4982-5970 ; 0000-0002-7542-0961 ; 0000000275420961 ; 0000000207460400 ; 0000000349825970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0191933$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38364013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2315665$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinitsyn, Nikolai A.</creatorcontrib><creatorcontrib>Sadhasivam, Vijay Ganesh</creatorcontrib><creatorcontrib>Suzuki, Fumika</creatorcontrib><creatorcontrib>US Department of Energy (USDOE), Washington, DC (United States). Office of Science, Advanced Scientific Computing Research (ASCR)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Nonadiabatic transitions during a passage near a critical point</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The passage through a critical point of a many-body quantum system leads to abundant nonadiabatic excitations. Here, we explore a regime, in which the critical point is not crossed although the system is passing slowly very close to it. We show that the leading exponent for the excitation probability can then be obtained by standard arguments of the Dykhne formula, but the exponential prefactor is no longer simple and behaves as a power law on the characteristic transition rate. We derive this prefactor for the nonlinear Landau–Zener model by adjusting Dykhne’s approach. Then, we introduce an exactly solvable model of the transition near a critical point in the Stark ladder. We derive the number of excitations for it without approximations and find qualitatively similar results for the excitation scaling.</description><subject>adiabatic theorem</subject><subject>Bose-Einstein condensate</subject><subject>Critical point</subject><subject>Excitation</subject><subject>ferromagnetism</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>phase transitions</subject><subject>quantum phase transition</subject><subject>Quantum theory</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E-LFDEQBfAgijs7evALSKMXFXqtpLrTnZPIsv6BRS96DtXV6TXLTDIm6YPf3gwzevDgKRT8eLw8IZ5JuJKg8W1_BdJIg_hAbCSMph20gYdiA6BkazToC3GZ8z0AyEF1j8UFjqg7kLgR777EQLOniYrnpiQK2RcfQ27mNflw11BzoJzpzjXBUaonpwqYds0h-lCeiEcL7bJ7en634vuHm2_Xn9rbrx8_X7-_bbmTUFquPacZFAMOk-wlaqkcO4N6YqJlROhdT3IyelHLMvUjM_A8AXaIDIS4FS9OuTEXbzP74vgHxxAcF6tQ9lr3Fb06oUOKP1eXi937zG63o-Dimq0yalTdOBpd6ct_6H1cU6hfOKphkDjUllvx-qQ4xZyTW-wh-T2lX1aCPU5ve3uevtrn58R12rv5r_yzdQVvTuDYno4j_yftN2J_iRY</recordid><startdate>20240221</startdate><enddate>20240221</enddate><creator>Sinitsyn, Nikolai A.</creator><creator>Sadhasivam, Vijay Ganesh</creator><creator>Suzuki, Fumika</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0746-0400</orcidid><orcidid>https://orcid.org/0000-0003-4982-5970</orcidid><orcidid>https://orcid.org/0000-0002-7542-0961</orcidid><orcidid>https://orcid.org/0000000275420961</orcidid><orcidid>https://orcid.org/0000000207460400</orcidid><orcidid>https://orcid.org/0000000349825970</orcidid></search><sort><creationdate>20240221</creationdate><title>Nonadiabatic transitions during a passage near a critical point</title><author>Sinitsyn, Nikolai A. ; Sadhasivam, Vijay Ganesh ; Suzuki, Fumika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-c106bd02c037b1513612ece936bcaaf8305e5a1b96f2ffb58cc0cdb03433c0a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adiabatic theorem</topic><topic>Bose-Einstein condensate</topic><topic>Critical point</topic><topic>Excitation</topic><topic>ferromagnetism</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>phase transitions</topic><topic>quantum phase transition</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinitsyn, Nikolai A.</creatorcontrib><creatorcontrib>Sadhasivam, Vijay Ganesh</creatorcontrib><creatorcontrib>Suzuki, Fumika</creatorcontrib><creatorcontrib>US Department of Energy (USDOE), Washington, DC (United States). Office of Science, Advanced Scientific Computing Research (ASCR)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinitsyn, Nikolai A.</au><au>Sadhasivam, Vijay Ganesh</au><au>Suzuki, Fumika</au><aucorp>US Department of Energy (USDOE), Washington, DC (United States). Office of Science, Advanced Scientific Computing Research (ASCR)</aucorp><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonadiabatic transitions during a passage near a critical point</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-02-21</date><risdate>2024</risdate><volume>160</volume><issue>7</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The passage through a critical point of a many-body quantum system leads to abundant nonadiabatic excitations. Here, we explore a regime, in which the critical point is not crossed although the system is passing slowly very close to it. We show that the leading exponent for the excitation probability can then be obtained by standard arguments of the Dykhne formula, but the exponential prefactor is no longer simple and behaves as a power law on the characteristic transition rate. We derive this prefactor for the nonlinear Landau–Zener model by adjusting Dykhne’s approach. Then, we introduce an exactly solvable model of the transition near a critical point in the Stark ladder. We derive the number of excitations for it without approximations and find qualitatively similar results for the excitation scaling.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38364013</pmid><doi>10.1063/5.0191933</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0746-0400</orcidid><orcidid>https://orcid.org/0000-0003-4982-5970</orcidid><orcidid>https://orcid.org/0000-0002-7542-0961</orcidid><orcidid>https://orcid.org/0000000275420961</orcidid><orcidid>https://orcid.org/0000000207460400</orcidid><orcidid>https://orcid.org/0000000349825970</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-02, Vol.160 (7) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0191933 |
source | AIP Journals Complete |
subjects | adiabatic theorem Bose-Einstein condensate Critical point Excitation ferromagnetism INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY phase transitions quantum phase transition Quantum theory |
title | Nonadiabatic transitions during a passage near a critical point |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonadiabatic%20transitions%20during%20a%20passage%20near%20a%20critical%20point&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Sinitsyn,%20Nikolai%20A.&rft.aucorp=US%20Department%20of%20Energy%20(USDOE),%20Washington,%20DC%20(United%20States).%20Office%20of%20Science,%20Advanced%20Scientific%20Computing%20Research%20(ASCR)&rft.date=2024-02-21&rft.volume=160&rft.issue=7&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0191933&rft_dat=%3Cproquest_cross%3E2927713751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927713751&rft_id=info:pmid/38364013&rfr_iscdi=true |