DFT study of energetics and optoelectronics properties of B, C, and N binary and ternary honeycomb structures

Using the Full Potential Linear Augmented Plane Wave and the pseudo-potential method based on the Density Functional Theory, we investigate the physical properties of two-dimensional (2D) boron nitride, carbon nitride, and boron carbide as well as their ternary system boron carbon nitride (BCN). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2024-03, Vol.135 (9)
Hauptverfasser: Tazekritt, S., Gallouze, M., Kellou, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Journal of applied physics
container_volume 135
creator Tazekritt, S.
Gallouze, M.
Kellou, A.
description Using the Full Potential Linear Augmented Plane Wave and the pseudo-potential method based on the Density Functional Theory, we investigate the physical properties of two-dimensional (2D) boron nitride, carbon nitride, and boron carbide as well as their ternary system boron carbon nitride (BCN). The structural and optoelectronic properties are determined and discussed in detail with available theoretical and experimental results. We show that the studied physical properties are influenced and tunable by atom concentration. A high concentration of nitrogen (> 50%) disturbs the honeycomb structure of binary and ternary alloys. Additionally, the optoelectronic properties are very sensitive to the amount of boron and nitrogen atoms. The zero bandgap is only conserved for B3C12N3 and B6C6N6 ternary systems. A large bandgap was observed for B9N9 (∼3.9 eV) and a moderate one for B6N12 and B3N15 (∼2 eV). The coexistence of boron, carbon, and nitrogen atoms with different concentrations has important optical properties as they can absorb light in all spectra. However, they have more active absorption in the ultraviolet than visible regions. It is more interesting to use ternary BCN than binary or pristine alloys with tunable optoelectric properties, by varying the nitrogen content in nanodevices.
doi_str_mv 10.1063/5.0187708
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0187708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933620674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-e970f7b1677624f295a8fbe0b725249a32d9f7f8753cc97f1ccdbbf40bc98a013</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqUw8A8iMYGa8uzEsT1CoYBUwVLmKHaeIVUbB9sZ-u-bfsxM70NHV0eXkFsKUwpF9sinQKUQIM_IiIJUqeAczskIgNFUKqEuyVUIKwBKZaZGZPMyXyYh9vU2cTbBFv0PxsaEpGrrxHXR4RpN9K7d_zrvOvSxwbCHnyfJbHLgPhPdtJXfHo6I_rD_uha3xm30EO97E3uP4Zpc2God8OY0x-R7_rqcvaeLr7eP2dMiNUyKmKISYIWmhRAFyy1TvJJWI2jBOMtVlbFaWWGl4JkxSlhqTK21zUEbJSug2ZjcHXMH478eQyxXrh-01qFkKssKBoXIB-r-SBnvQvBoy843m8G9pFDu2yx5eWpzYB-ObDBNrGLj2n_gHbbBdKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933620674</pqid></control><display><type>article</type><title>DFT study of energetics and optoelectronics properties of B, C, and N binary and ternary honeycomb structures</title><source>Alma/SFX Local Collection</source><creator>Tazekritt, S. ; Gallouze, M. ; Kellou, A.</creator><creatorcontrib>Tazekritt, S. ; Gallouze, M. ; Kellou, A.</creatorcontrib><description>Using the Full Potential Linear Augmented Plane Wave and the pseudo-potential method based on the Density Functional Theory, we investigate the physical properties of two-dimensional (2D) boron nitride, carbon nitride, and boron carbide as well as their ternary system boron carbon nitride (BCN). The structural and optoelectronic properties are determined and discussed in detail with available theoretical and experimental results. We show that the studied physical properties are influenced and tunable by atom concentration. A high concentration of nitrogen (&gt; 50%) disturbs the honeycomb structure of binary and ternary alloys. Additionally, the optoelectronic properties are very sensitive to the amount of boron and nitrogen atoms. The zero bandgap is only conserved for B3C12N3 and B6C6N6 ternary systems. A large bandgap was observed for B9N9 (∼3.9 eV) and a moderate one for B6N12 and B3N15 (∼2 eV). The coexistence of boron, carbon, and nitrogen atoms with different concentrations has important optical properties as they can absorb light in all spectra. However, they have more active absorption in the ultraviolet than visible regions. It is more interesting to use ternary BCN than binary or pristine alloys with tunable optoelectric properties, by varying the nitrogen content in nanodevices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0187708</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Atom concentration ; Binary alloys ; Boron ; Boron carbide ; Boron nitride ; Carbon ; Carbon nitride ; Density functional theory ; Energy gap ; Honeycomb structures ; Nanotechnology devices ; Nitrogen ; Nitrogen atoms ; Optical properties ; Optoelectronics ; Physical properties ; Plane waves ; Ternary alloys ; Ternary systems</subject><ispartof>Journal of applied physics, 2024-03, Vol.135 (9)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-e970f7b1677624f295a8fbe0b725249a32d9f7f8753cc97f1ccdbbf40bc98a013</cites><orcidid>0000-0002-0046-2497 ; 0000-0003-1745-5514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tazekritt, S.</creatorcontrib><creatorcontrib>Gallouze, M.</creatorcontrib><creatorcontrib>Kellou, A.</creatorcontrib><title>DFT study of energetics and optoelectronics properties of B, C, and N binary and ternary honeycomb structures</title><title>Journal of applied physics</title><description>Using the Full Potential Linear Augmented Plane Wave and the pseudo-potential method based on the Density Functional Theory, we investigate the physical properties of two-dimensional (2D) boron nitride, carbon nitride, and boron carbide as well as their ternary system boron carbon nitride (BCN). The structural and optoelectronic properties are determined and discussed in detail with available theoretical and experimental results. We show that the studied physical properties are influenced and tunable by atom concentration. A high concentration of nitrogen (&gt; 50%) disturbs the honeycomb structure of binary and ternary alloys. Additionally, the optoelectronic properties are very sensitive to the amount of boron and nitrogen atoms. The zero bandgap is only conserved for B3C12N3 and B6C6N6 ternary systems. A large bandgap was observed for B9N9 (∼3.9 eV) and a moderate one for B6N12 and B3N15 (∼2 eV). The coexistence of boron, carbon, and nitrogen atoms with different concentrations has important optical properties as they can absorb light in all spectra. However, they have more active absorption in the ultraviolet than visible regions. It is more interesting to use ternary BCN than binary or pristine alloys with tunable optoelectric properties, by varying the nitrogen content in nanodevices.</description><subject>Atom concentration</subject><subject>Binary alloys</subject><subject>Boron</subject><subject>Boron carbide</subject><subject>Boron nitride</subject><subject>Carbon</subject><subject>Carbon nitride</subject><subject>Density functional theory</subject><subject>Energy gap</subject><subject>Honeycomb structures</subject><subject>Nanotechnology devices</subject><subject>Nitrogen</subject><subject>Nitrogen atoms</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Physical properties</subject><subject>Plane waves</subject><subject>Ternary alloys</subject><subject>Ternary systems</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqUw8A8iMYGa8uzEsT1CoYBUwVLmKHaeIVUbB9sZ-u-bfsxM70NHV0eXkFsKUwpF9sinQKUQIM_IiIJUqeAczskIgNFUKqEuyVUIKwBKZaZGZPMyXyYh9vU2cTbBFv0PxsaEpGrrxHXR4RpN9K7d_zrvOvSxwbCHnyfJbHLgPhPdtJXfHo6I_rD_uha3xm30EO97E3uP4Zpc2God8OY0x-R7_rqcvaeLr7eP2dMiNUyKmKISYIWmhRAFyy1TvJJWI2jBOMtVlbFaWWGl4JkxSlhqTK21zUEbJSug2ZjcHXMH478eQyxXrh-01qFkKssKBoXIB-r-SBnvQvBoy843m8G9pFDu2yx5eWpzYB-ObDBNrGLj2n_gHbbBdKY</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>Tazekritt, S.</creator><creator>Gallouze, M.</creator><creator>Kellou, A.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0046-2497</orcidid><orcidid>https://orcid.org/0000-0003-1745-5514</orcidid></search><sort><creationdate>20240307</creationdate><title>DFT study of energetics and optoelectronics properties of B, C, and N binary and ternary honeycomb structures</title><author>Tazekritt, S. ; Gallouze, M. ; Kellou, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-e970f7b1677624f295a8fbe0b725249a32d9f7f8753cc97f1ccdbbf40bc98a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atom concentration</topic><topic>Binary alloys</topic><topic>Boron</topic><topic>Boron carbide</topic><topic>Boron nitride</topic><topic>Carbon</topic><topic>Carbon nitride</topic><topic>Density functional theory</topic><topic>Energy gap</topic><topic>Honeycomb structures</topic><topic>Nanotechnology devices</topic><topic>Nitrogen</topic><topic>Nitrogen atoms</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Physical properties</topic><topic>Plane waves</topic><topic>Ternary alloys</topic><topic>Ternary systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tazekritt, S.</creatorcontrib><creatorcontrib>Gallouze, M.</creatorcontrib><creatorcontrib>Kellou, A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tazekritt, S.</au><au>Gallouze, M.</au><au>Kellou, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT study of energetics and optoelectronics properties of B, C, and N binary and ternary honeycomb structures</atitle><jtitle>Journal of applied physics</jtitle><date>2024-03-07</date><risdate>2024</risdate><volume>135</volume><issue>9</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Using the Full Potential Linear Augmented Plane Wave and the pseudo-potential method based on the Density Functional Theory, we investigate the physical properties of two-dimensional (2D) boron nitride, carbon nitride, and boron carbide as well as their ternary system boron carbon nitride (BCN). The structural and optoelectronic properties are determined and discussed in detail with available theoretical and experimental results. We show that the studied physical properties are influenced and tunable by atom concentration. A high concentration of nitrogen (&gt; 50%) disturbs the honeycomb structure of binary and ternary alloys. Additionally, the optoelectronic properties are very sensitive to the amount of boron and nitrogen atoms. The zero bandgap is only conserved for B3C12N3 and B6C6N6 ternary systems. A large bandgap was observed for B9N9 (∼3.9 eV) and a moderate one for B6N12 and B3N15 (∼2 eV). The coexistence of boron, carbon, and nitrogen atoms with different concentrations has important optical properties as they can absorb light in all spectra. However, they have more active absorption in the ultraviolet than visible regions. It is more interesting to use ternary BCN than binary or pristine alloys with tunable optoelectric properties, by varying the nitrogen content in nanodevices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0187708</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0046-2497</orcidid><orcidid>https://orcid.org/0000-0003-1745-5514</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-03, Vol.135 (9)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0187708
source Alma/SFX Local Collection
subjects Atom concentration
Binary alloys
Boron
Boron carbide
Boron nitride
Carbon
Carbon nitride
Density functional theory
Energy gap
Honeycomb structures
Nanotechnology devices
Nitrogen
Nitrogen atoms
Optical properties
Optoelectronics
Physical properties
Plane waves
Ternary alloys
Ternary systems
title DFT study of energetics and optoelectronics properties of B, C, and N binary and ternary honeycomb structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT%20study%20of%20energetics%20and%20optoelectronics%20properties%20of%20B,%20C,%20and%20N%20binary%20and%20ternary%20honeycomb%20structures&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Tazekritt,%20S.&rft.date=2024-03-07&rft.volume=135&rft.issue=9&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0187708&rft_dat=%3Cproquest_cross%3E2933620674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933620674&rft_id=info:pmid/&rfr_iscdi=true