DFT study of energetics and optoelectronics properties of B, C, and N binary and ternary honeycomb structures
Using the Full Potential Linear Augmented Plane Wave and the pseudo-potential method based on the Density Functional Theory, we investigate the physical properties of two-dimensional (2D) boron nitride, carbon nitride, and boron carbide as well as their ternary system boron carbon nitride (BCN). The...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2024-03, Vol.135 (9) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 135 |
creator | Tazekritt, S. Gallouze, M. Kellou, A. |
description | Using the Full Potential Linear Augmented Plane Wave and the pseudo-potential method based on the Density Functional Theory, we investigate the physical properties of two-dimensional (2D) boron nitride, carbon nitride, and boron carbide as well as their ternary system boron carbon nitride (BCN). The structural and optoelectronic properties are determined and discussed in detail with available theoretical and experimental results. We show that the studied physical properties are influenced and tunable by atom concentration. A high concentration of nitrogen (> 50%) disturbs the honeycomb structure of binary and ternary alloys. Additionally, the optoelectronic properties are very sensitive to the amount of boron and nitrogen atoms. The zero bandgap is only conserved for B3C12N3 and B6C6N6 ternary systems. A large bandgap was observed for B9N9 (∼3.9 eV) and a moderate one for B6N12 and B3N15 (∼2 eV). The coexistence of boron, carbon, and nitrogen atoms with different concentrations has important optical properties as they can absorb light in all spectra. However, they have more active absorption in the ultraviolet than visible regions. It is more interesting to use ternary BCN than binary or pristine alloys with tunable optoelectric properties, by varying the nitrogen content in nanodevices. |
doi_str_mv | 10.1063/5.0187708 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0187708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933620674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-e970f7b1677624f295a8fbe0b725249a32d9f7f8753cc97f1ccdbbf40bc98a013</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqUw8A8iMYGa8uzEsT1CoYBUwVLmKHaeIVUbB9sZ-u-bfsxM70NHV0eXkFsKUwpF9sinQKUQIM_IiIJUqeAczskIgNFUKqEuyVUIKwBKZaZGZPMyXyYh9vU2cTbBFv0PxsaEpGrrxHXR4RpN9K7d_zrvOvSxwbCHnyfJbHLgPhPdtJXfHo6I_rD_uha3xm30EO97E3uP4Zpc2God8OY0x-R7_rqcvaeLr7eP2dMiNUyKmKISYIWmhRAFyy1TvJJWI2jBOMtVlbFaWWGl4JkxSlhqTK21zUEbJSug2ZjcHXMH478eQyxXrh-01qFkKssKBoXIB-r-SBnvQvBoy843m8G9pFDu2yx5eWpzYB-ObDBNrGLj2n_gHbbBdKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933620674</pqid></control><display><type>article</type><title>DFT study of energetics and optoelectronics properties of B, C, and N binary and ternary honeycomb structures</title><source>Alma/SFX Local Collection</source><creator>Tazekritt, S. ; Gallouze, M. ; Kellou, A.</creator><creatorcontrib>Tazekritt, S. ; Gallouze, M. ; Kellou, A.</creatorcontrib><description>Using the Full Potential Linear Augmented Plane Wave and the pseudo-potential method based on the Density Functional Theory, we investigate the physical properties of two-dimensional (2D) boron nitride, carbon nitride, and boron carbide as well as their ternary system boron carbon nitride (BCN). The structural and optoelectronic properties are determined and discussed in detail with available theoretical and experimental results. We show that the studied physical properties are influenced and tunable by atom concentration. A high concentration of nitrogen (> 50%) disturbs the honeycomb structure of binary and ternary alloys. Additionally, the optoelectronic properties are very sensitive to the amount of boron and nitrogen atoms. The zero bandgap is only conserved for B3C12N3 and B6C6N6 ternary systems. A large bandgap was observed for B9N9 (∼3.9 eV) and a moderate one for B6N12 and B3N15 (∼2 eV). The coexistence of boron, carbon, and nitrogen atoms with different concentrations has important optical properties as they can absorb light in all spectra. However, they have more active absorption in the ultraviolet than visible regions. It is more interesting to use ternary BCN than binary or pristine alloys with tunable optoelectric properties, by varying the nitrogen content in nanodevices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0187708</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Atom concentration ; Binary alloys ; Boron ; Boron carbide ; Boron nitride ; Carbon ; Carbon nitride ; Density functional theory ; Energy gap ; Honeycomb structures ; Nanotechnology devices ; Nitrogen ; Nitrogen atoms ; Optical properties ; Optoelectronics ; Physical properties ; Plane waves ; Ternary alloys ; Ternary systems</subject><ispartof>Journal of applied physics, 2024-03, Vol.135 (9)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-e970f7b1677624f295a8fbe0b725249a32d9f7f8753cc97f1ccdbbf40bc98a013</cites><orcidid>0000-0002-0046-2497 ; 0000-0003-1745-5514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tazekritt, S.</creatorcontrib><creatorcontrib>Gallouze, M.</creatorcontrib><creatorcontrib>Kellou, A.</creatorcontrib><title>DFT study of energetics and optoelectronics properties of B, C, and N binary and ternary honeycomb structures</title><title>Journal of applied physics</title><description>Using the Full Potential Linear Augmented Plane Wave and the pseudo-potential method based on the Density Functional Theory, we investigate the physical properties of two-dimensional (2D) boron nitride, carbon nitride, and boron carbide as well as their ternary system boron carbon nitride (BCN). The structural and optoelectronic properties are determined and discussed in detail with available theoretical and experimental results. We show that the studied physical properties are influenced and tunable by atom concentration. A high concentration of nitrogen (> 50%) disturbs the honeycomb structure of binary and ternary alloys. Additionally, the optoelectronic properties are very sensitive to the amount of boron and nitrogen atoms. The zero bandgap is only conserved for B3C12N3 and B6C6N6 ternary systems. A large bandgap was observed for B9N9 (∼3.9 eV) and a moderate one for B6N12 and B3N15 (∼2 eV). The coexistence of boron, carbon, and nitrogen atoms with different concentrations has important optical properties as they can absorb light in all spectra. However, they have more active absorption in the ultraviolet than visible regions. It is more interesting to use ternary BCN than binary or pristine alloys with tunable optoelectric properties, by varying the nitrogen content in nanodevices.</description><subject>Atom concentration</subject><subject>Binary alloys</subject><subject>Boron</subject><subject>Boron carbide</subject><subject>Boron nitride</subject><subject>Carbon</subject><subject>Carbon nitride</subject><subject>Density functional theory</subject><subject>Energy gap</subject><subject>Honeycomb structures</subject><subject>Nanotechnology devices</subject><subject>Nitrogen</subject><subject>Nitrogen atoms</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Physical properties</subject><subject>Plane waves</subject><subject>Ternary alloys</subject><subject>Ternary systems</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqUw8A8iMYGa8uzEsT1CoYBUwVLmKHaeIVUbB9sZ-u-bfsxM70NHV0eXkFsKUwpF9sinQKUQIM_IiIJUqeAczskIgNFUKqEuyVUIKwBKZaZGZPMyXyYh9vU2cTbBFv0PxsaEpGrrxHXR4RpN9K7d_zrvOvSxwbCHnyfJbHLgPhPdtJXfHo6I_rD_uha3xm30EO97E3uP4Zpc2God8OY0x-R7_rqcvaeLr7eP2dMiNUyKmKISYIWmhRAFyy1TvJJWI2jBOMtVlbFaWWGl4JkxSlhqTK21zUEbJSug2ZjcHXMH478eQyxXrh-01qFkKssKBoXIB-r-SBnvQvBoy843m8G9pFDu2yx5eWpzYB-ObDBNrGLj2n_gHbbBdKY</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>Tazekritt, S.</creator><creator>Gallouze, M.</creator><creator>Kellou, A.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0046-2497</orcidid><orcidid>https://orcid.org/0000-0003-1745-5514</orcidid></search><sort><creationdate>20240307</creationdate><title>DFT study of energetics and optoelectronics properties of B, C, and N binary and ternary honeycomb structures</title><author>Tazekritt, S. ; Gallouze, M. ; Kellou, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-e970f7b1677624f295a8fbe0b725249a32d9f7f8753cc97f1ccdbbf40bc98a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atom concentration</topic><topic>Binary alloys</topic><topic>Boron</topic><topic>Boron carbide</topic><topic>Boron nitride</topic><topic>Carbon</topic><topic>Carbon nitride</topic><topic>Density functional theory</topic><topic>Energy gap</topic><topic>Honeycomb structures</topic><topic>Nanotechnology devices</topic><topic>Nitrogen</topic><topic>Nitrogen atoms</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Physical properties</topic><topic>Plane waves</topic><topic>Ternary alloys</topic><topic>Ternary systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tazekritt, S.</creatorcontrib><creatorcontrib>Gallouze, M.</creatorcontrib><creatorcontrib>Kellou, A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tazekritt, S.</au><au>Gallouze, M.</au><au>Kellou, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT study of energetics and optoelectronics properties of B, C, and N binary and ternary honeycomb structures</atitle><jtitle>Journal of applied physics</jtitle><date>2024-03-07</date><risdate>2024</risdate><volume>135</volume><issue>9</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Using the Full Potential Linear Augmented Plane Wave and the pseudo-potential method based on the Density Functional Theory, we investigate the physical properties of two-dimensional (2D) boron nitride, carbon nitride, and boron carbide as well as their ternary system boron carbon nitride (BCN). The structural and optoelectronic properties are determined and discussed in detail with available theoretical and experimental results. We show that the studied physical properties are influenced and tunable by atom concentration. A high concentration of nitrogen (> 50%) disturbs the honeycomb structure of binary and ternary alloys. Additionally, the optoelectronic properties are very sensitive to the amount of boron and nitrogen atoms. The zero bandgap is only conserved for B3C12N3 and B6C6N6 ternary systems. A large bandgap was observed for B9N9 (∼3.9 eV) and a moderate one for B6N12 and B3N15 (∼2 eV). The coexistence of boron, carbon, and nitrogen atoms with different concentrations has important optical properties as they can absorb light in all spectra. However, they have more active absorption in the ultraviolet than visible regions. It is more interesting to use ternary BCN than binary or pristine alloys with tunable optoelectric properties, by varying the nitrogen content in nanodevices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0187708</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0046-2497</orcidid><orcidid>https://orcid.org/0000-0003-1745-5514</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-03, Vol.135 (9) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0187708 |
source | Alma/SFX Local Collection |
subjects | Atom concentration Binary alloys Boron Boron carbide Boron nitride Carbon Carbon nitride Density functional theory Energy gap Honeycomb structures Nanotechnology devices Nitrogen Nitrogen atoms Optical properties Optoelectronics Physical properties Plane waves Ternary alloys Ternary systems |
title | DFT study of energetics and optoelectronics properties of B, C, and N binary and ternary honeycomb structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT%20study%20of%20energetics%20and%20optoelectronics%20properties%20of%20B,%20C,%20and%20N%20binary%20and%20ternary%20honeycomb%20structures&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Tazekritt,%20S.&rft.date=2024-03-07&rft.volume=135&rft.issue=9&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0187708&rft_dat=%3Cproquest_cross%3E2933620674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933620674&rft_id=info:pmid/&rfr_iscdi=true |