Omega motion, rolling, and active standing of a worm-inspired robot under the action of the magnetic field

With the rapid development of origami technologies, worm-inspired robots have attracted a great deal of attention due to their flexible locomotion characteristics. In the present work, we have prepared a soft robot inspired by the worms, which can achieve various locomotion patterns under the actuat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-02, Vol.14 (2), p.025016-025016-7
Hauptverfasser: Jin, Yuchen, Li, Jing, Liu, Shiyang, Cao, Gongqi, Liu, Jianlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 025016-7
container_issue 2
container_start_page 025016
container_title AIP advances
container_volume 14
creator Jin, Yuchen
Li, Jing
Liu, Shiyang
Cao, Gongqi
Liu, Jianlin
description With the rapid development of origami technologies, worm-inspired robots have attracted a great deal of attention due to their flexible locomotion characteristics. In the present work, we have prepared a soft robot inspired by the worms, which can achieve various locomotion patterns under the actuation of magnetic field. First, the origami technique is used to form the backbone of the robot, and two NdFeB discs are adhered on its two ends. Next, the experiments for controlling the Omega motion and rolling of the robot are performed, and the mechanical analyses are given. In the experiments, the Omega locomotion speed and rolling speed can reach ∼5 mm/s and 2π rad/s, respectively. Then, two typical examples on the composite motion, including the Omega motion and rolling, are demonstrated, where the robot can realize the tasks of sweeping objects and obstacle crossing in unstructured environments. We further design a system to mimic the situation when the worm-like robot detects and responds to the dangerous signal, and the power of the electromagnet can be accurately controlled. These findings cast a new light on engineering intelligent robots and devices originating from the inspirations of living creatures.
doi_str_mv 10.1063/5.0186342
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0186342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b49921e7ead04d8ebd7f23305859b84c</doaj_id><sourcerecordid>2923484679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-77b21b1826cc108c87988f540d9861f48651f30be7da9656c0e8612d90cd6f433</originalsourceid><addsrcrecordid>eNp9kUlLBDEQhRtRcFAP_oOAJ8XW7J0cRdxA8KLnkM4yZujujElG8d-bWRBP5lKpx1cvj1TTnCJ4hSAn1-wKIsEJxXvNDCMmWoIx3_9zP2xOcl7AeqhEUNBZs3gZ3VyDMZYQp0uQ4jCEaX4J9GSBNiV8OpBLbaoIogcafMU0tmHKy5CcrXwfC1hN1iVQ3t1mJE5rct2Nej65EgzwwQ32uDnwesjuZFePmrf7u9fbx_b55eHp9ua5NYSR0nZdj1GPBObG1IxGdFIIzyi0UnDkqeAMeQJ711ktOeMGuqpjK6Gx3FNCjpqnra-NeqGWKYw6fauog9oIMc2VTjXV4FRPpcTIdU5bSK1wve08JgQywWQvqKleZ1uvZYofK5eLWsRVmmp8hSUmVFDeyUqdbymTYs7J-d9XEVTrzSimdpup7MWWzSYUvf6tf-AfAoeLgw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923484679</pqid></control><display><type>article</type><title>Omega motion, rolling, and active standing of a worm-inspired robot under the action of the magnetic field</title><source>DOAJ Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Jin, Yuchen ; Li, Jing ; Liu, Shiyang ; Cao, Gongqi ; Liu, Jianlin</creator><creatorcontrib>Jin, Yuchen ; Li, Jing ; Liu, Shiyang ; Cao, Gongqi ; Liu, Jianlin</creatorcontrib><description>With the rapid development of origami technologies, worm-inspired robots have attracted a great deal of attention due to their flexible locomotion characteristics. In the present work, we have prepared a soft robot inspired by the worms, which can achieve various locomotion patterns under the actuation of magnetic field. First, the origami technique is used to form the backbone of the robot, and two NdFeB discs are adhered on its two ends. Next, the experiments for controlling the Omega motion and rolling of the robot are performed, and the mechanical analyses are given. In the experiments, the Omega locomotion speed and rolling speed can reach ∼5 mm/s and 2π rad/s, respectively. Then, two typical examples on the composite motion, including the Omega motion and rolling, are demonstrated, where the robot can realize the tasks of sweeping objects and obstacle crossing in unstructured environments. We further design a system to mimic the situation when the worm-like robot detects and responds to the dangerous signal, and the power of the electromagnet can be accurately controlled. These findings cast a new light on engineering intelligent robots and devices originating from the inspirations of living creatures.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0186342</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuation ; Electromagnets ; Locomotion ; Magnetic fields ; Robot dynamics ; Robots ; Rolling speed ; Soft robotics</subject><ispartof>AIP advances, 2024-02, Vol.14 (2), p.025016-025016-7</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-77b21b1826cc108c87988f540d9861f48651f30be7da9656c0e8612d90cd6f433</cites><orcidid>0000-0002-7445-3518 ; 0000-0002-3017-7662 ; 0000-0001-8735-9427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Jin, Yuchen</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Liu, Shiyang</creatorcontrib><creatorcontrib>Cao, Gongqi</creatorcontrib><creatorcontrib>Liu, Jianlin</creatorcontrib><title>Omega motion, rolling, and active standing of a worm-inspired robot under the action of the magnetic field</title><title>AIP advances</title><description>With the rapid development of origami technologies, worm-inspired robots have attracted a great deal of attention due to their flexible locomotion characteristics. In the present work, we have prepared a soft robot inspired by the worms, which can achieve various locomotion patterns under the actuation of magnetic field. First, the origami technique is used to form the backbone of the robot, and two NdFeB discs are adhered on its two ends. Next, the experiments for controlling the Omega motion and rolling of the robot are performed, and the mechanical analyses are given. In the experiments, the Omega locomotion speed and rolling speed can reach ∼5 mm/s and 2π rad/s, respectively. Then, two typical examples on the composite motion, including the Omega motion and rolling, are demonstrated, where the robot can realize the tasks of sweeping objects and obstacle crossing in unstructured environments. We further design a system to mimic the situation when the worm-like robot detects and responds to the dangerous signal, and the power of the electromagnet can be accurately controlled. These findings cast a new light on engineering intelligent robots and devices originating from the inspirations of living creatures.</description><subject>Actuation</subject><subject>Electromagnets</subject><subject>Locomotion</subject><subject>Magnetic fields</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Rolling speed</subject><subject>Soft robotics</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUlLBDEQhRtRcFAP_oOAJ8XW7J0cRdxA8KLnkM4yZujujElG8d-bWRBP5lKpx1cvj1TTnCJ4hSAn1-wKIsEJxXvNDCMmWoIx3_9zP2xOcl7AeqhEUNBZs3gZ3VyDMZYQp0uQ4jCEaX4J9GSBNiV8OpBLbaoIogcafMU0tmHKy5CcrXwfC1hN1iVQ3t1mJE5rct2Nej65EgzwwQ32uDnwesjuZFePmrf7u9fbx_b55eHp9ua5NYSR0nZdj1GPBObG1IxGdFIIzyi0UnDkqeAMeQJ711ktOeMGuqpjK6Gx3FNCjpqnra-NeqGWKYw6fauog9oIMc2VTjXV4FRPpcTIdU5bSK1wve08JgQywWQvqKleZ1uvZYofK5eLWsRVmmp8hSUmVFDeyUqdbymTYs7J-d9XEVTrzSimdpup7MWWzSYUvf6tf-AfAoeLgw</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Jin, Yuchen</creator><creator>Li, Jing</creator><creator>Liu, Shiyang</creator><creator>Cao, Gongqi</creator><creator>Liu, Jianlin</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7445-3518</orcidid><orcidid>https://orcid.org/0000-0002-3017-7662</orcidid><orcidid>https://orcid.org/0000-0001-8735-9427</orcidid></search><sort><creationdate>20240201</creationdate><title>Omega motion, rolling, and active standing of a worm-inspired robot under the action of the magnetic field</title><author>Jin, Yuchen ; Li, Jing ; Liu, Shiyang ; Cao, Gongqi ; Liu, Jianlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-77b21b1826cc108c87988f540d9861f48651f30be7da9656c0e8612d90cd6f433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuation</topic><topic>Electromagnets</topic><topic>Locomotion</topic><topic>Magnetic fields</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Rolling speed</topic><topic>Soft robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yuchen</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Liu, Shiyang</creatorcontrib><creatorcontrib>Cao, Gongqi</creatorcontrib><creatorcontrib>Liu, Jianlin</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yuchen</au><au>Li, Jing</au><au>Liu, Shiyang</au><au>Cao, Gongqi</au><au>Liu, Jianlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Omega motion, rolling, and active standing of a worm-inspired robot under the action of the magnetic field</atitle><jtitle>AIP advances</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>14</volume><issue>2</issue><spage>025016</spage><epage>025016-7</epage><pages>025016-025016-7</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>With the rapid development of origami technologies, worm-inspired robots have attracted a great deal of attention due to their flexible locomotion characteristics. In the present work, we have prepared a soft robot inspired by the worms, which can achieve various locomotion patterns under the actuation of magnetic field. First, the origami technique is used to form the backbone of the robot, and two NdFeB discs are adhered on its two ends. Next, the experiments for controlling the Omega motion and rolling of the robot are performed, and the mechanical analyses are given. In the experiments, the Omega locomotion speed and rolling speed can reach ∼5 mm/s and 2π rad/s, respectively. Then, two typical examples on the composite motion, including the Omega motion and rolling, are demonstrated, where the robot can realize the tasks of sweeping objects and obstacle crossing in unstructured environments. We further design a system to mimic the situation when the worm-like robot detects and responds to the dangerous signal, and the power of the electromagnet can be accurately controlled. These findings cast a new light on engineering intelligent robots and devices originating from the inspirations of living creatures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0186342</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7445-3518</orcidid><orcidid>https://orcid.org/0000-0002-3017-7662</orcidid><orcidid>https://orcid.org/0000-0001-8735-9427</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2024-02, Vol.14 (2), p.025016-025016-7
issn 2158-3226
2158-3226
language eng
recordid cdi_crossref_primary_10_1063_5_0186342
source DOAJ Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Actuation
Electromagnets
Locomotion
Magnetic fields
Robot dynamics
Robots
Rolling speed
Soft robotics
title Omega motion, rolling, and active standing of a worm-inspired robot under the action of the magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Omega%20motion,%20rolling,%20and%20active%20standing%20of%20a%20worm-inspired%20robot%20under%20the%20action%20of%20the%20magnetic%20field&rft.jtitle=AIP%20advances&rft.au=Jin,%20Yuchen&rft.date=2024-02-01&rft.volume=14&rft.issue=2&rft.spage=025016&rft.epage=025016-7&rft.pages=025016-025016-7&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0186342&rft_dat=%3Cproquest_cross%3E2923484679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923484679&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_b49921e7ead04d8ebd7f23305859b84c&rfr_iscdi=true