Collaborative hierarchical scheduling model of interconnected multi-microgrid and ADN considering DR with different strategies

The demand response (DR) resources of multiple entities have different operation strategies, which makes it difficult to realize the co-optimization. This paper proposes a cooperative hierarchical scheduling optimization model of interconnected multi-microgrid and an active distribution network (ADN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-04, Vol.14 (4), p.045115-045115-12
Hauptverfasser: Shen, Yuming, Xu, Jiayin, Wang, Xuli, Guo, Wenzhang, Zhou, Yuanke, Feng, Peiru, Zhang, Mengyuan, Xu, Haoran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 045115-12
container_issue 4
container_start_page 045115
container_title AIP advances
container_volume 14
creator Shen, Yuming
Xu, Jiayin
Wang, Xuli
Guo, Wenzhang
Zhou, Yuanke
Feng, Peiru
Zhang, Mengyuan
Xu, Haoran
description The demand response (DR) resources of multiple entities have different operation strategies, which makes it difficult to realize the co-optimization. This paper proposes a cooperative hierarchical scheduling optimization model of interconnected multi-microgrid and an active distribution network (ADN) considering DR with different operation strategies. First, the collaborative hierarchical scheduling framework is proposed and the interaction characteristics and cooperative scheduling mode of multi-interconnected microgrid and ADN are analyzed. Second, the two-layer cooperative hierarchical scheduling model is established, considering DR with different strategies. The upper layer model takes the minimum operating cost of the ADN as the objective to optimize the trading tariff between the ADN and microgrids, and its own DR, while the lower layer model takes the operating cost of multi-microgrid as the objective to optimize the purchasing and selling of electrical energy for the ADN, the DR, and the interaction power. Finally, the case studies with three microgrids and an ADN are used to demonstrate the validity and effectiveness of the proposed model.
doi_str_mv 10.1063/5.0185173
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0185173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dc6798843af54e1abe57edfc4b05db75</doaj_id><sourcerecordid>3034827731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-89e2b1c909e4e269be26e2b06dabdacb34b57043375771d08a4972b216ac0fe43</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhQdRsGgX_oOAK4XRZJJMZpalvgpFQXQd8rjTpkwnNUkVN_52oxVx5V3kXi5fzgk5RXFC8AXBNb3kF5g0nAi6V4wqwpuSVlW9_2c-LMYxrnAu1hLcsFHxMfV9r7QPKrlXQEsHQQWzdEb1KJol2G3vhgVaews98h1yQ4Jg_DCASWDRetsnV66dCX4RnEVqsGhydY8yEZ2F8HX36hG9ubRE1nUdBBgSiinbwcJBPC4OOtVHGP_0o-L55vppelfOH25n08m8NJTTVDYtVJqYFrfAoKpbnY-8wbVV2iqjKdNcYEap4EIQixvFWlHpitTK4A4YPSpmO13r1Upuglur8C69cvJ74cNCqpCc6UFaU4u2aRhVHWdAlAYuwHaGacytFjxrne60NsG_bCEmufLbMOTnS4opayohKMnU2Y7KXxNjgO7XlWD5lZbk8ietzJ7v2GhcykH44R_4E4kRlcI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034827731</pqid></control><display><type>article</type><title>Collaborative hierarchical scheduling model of interconnected multi-microgrid and ADN considering DR with different strategies</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Shen, Yuming ; Xu, Jiayin ; Wang, Xuli ; Guo, Wenzhang ; Zhou, Yuanke ; Feng, Peiru ; Zhang, Mengyuan ; Xu, Haoran</creator><creatorcontrib>Shen, Yuming ; Xu, Jiayin ; Wang, Xuli ; Guo, Wenzhang ; Zhou, Yuanke ; Feng, Peiru ; Zhang, Mengyuan ; Xu, Haoran</creatorcontrib><description>The demand response (DR) resources of multiple entities have different operation strategies, which makes it difficult to realize the co-optimization. This paper proposes a cooperative hierarchical scheduling optimization model of interconnected multi-microgrid and an active distribution network (ADN) considering DR with different operation strategies. First, the collaborative hierarchical scheduling framework is proposed and the interaction characteristics and cooperative scheduling mode of multi-interconnected microgrid and ADN are analyzed. Second, the two-layer cooperative hierarchical scheduling model is established, considering DR with different strategies. The upper layer model takes the minimum operating cost of the ADN as the objective to optimize the trading tariff between the ADN and microgrids, and its own DR, while the lower layer model takes the operating cost of multi-microgrid as the objective to optimize the purchasing and selling of electrical energy for the ADN, the DR, and the interaction power. Finally, the case studies with three microgrids and an ADN are used to demonstrate the validity and effectiveness of the proposed model.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0185173</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Collaboration ; Distributed generation ; Operating costs ; Optimization models ; Scheduling</subject><ispartof>AIP advances, 2024-04, Vol.14 (4), p.045115-045115-12</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-89e2b1c909e4e269be26e2b06dabdacb34b57043375771d08a4972b216ac0fe43</cites><orcidid>0009-0008-1667-4655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Shen, Yuming</creatorcontrib><creatorcontrib>Xu, Jiayin</creatorcontrib><creatorcontrib>Wang, Xuli</creatorcontrib><creatorcontrib>Guo, Wenzhang</creatorcontrib><creatorcontrib>Zhou, Yuanke</creatorcontrib><creatorcontrib>Feng, Peiru</creatorcontrib><creatorcontrib>Zhang, Mengyuan</creatorcontrib><creatorcontrib>Xu, Haoran</creatorcontrib><title>Collaborative hierarchical scheduling model of interconnected multi-microgrid and ADN considering DR with different strategies</title><title>AIP advances</title><description>The demand response (DR) resources of multiple entities have different operation strategies, which makes it difficult to realize the co-optimization. This paper proposes a cooperative hierarchical scheduling optimization model of interconnected multi-microgrid and an active distribution network (ADN) considering DR with different operation strategies. First, the collaborative hierarchical scheduling framework is proposed and the interaction characteristics and cooperative scheduling mode of multi-interconnected microgrid and ADN are analyzed. Second, the two-layer cooperative hierarchical scheduling model is established, considering DR with different strategies. The upper layer model takes the minimum operating cost of the ADN as the objective to optimize the trading tariff between the ADN and microgrids, and its own DR, while the lower layer model takes the operating cost of multi-microgrid as the objective to optimize the purchasing and selling of electrical energy for the ADN, the DR, and the interaction power. Finally, the case studies with three microgrids and an ADN are used to demonstrate the validity and effectiveness of the proposed model.</description><subject>Collaboration</subject><subject>Distributed generation</subject><subject>Operating costs</subject><subject>Optimization models</subject><subject>Scheduling</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUtLAzEUhQdRsGgX_oOAK4XRZJJMZpalvgpFQXQd8rjTpkwnNUkVN_52oxVx5V3kXi5fzgk5RXFC8AXBNb3kF5g0nAi6V4wqwpuSVlW9_2c-LMYxrnAu1hLcsFHxMfV9r7QPKrlXQEsHQQWzdEb1KJol2G3vhgVaews98h1yQ4Jg_DCASWDRetsnV66dCX4RnEVqsGhydY8yEZ2F8HX36hG9ubRE1nUdBBgSiinbwcJBPC4OOtVHGP_0o-L55vppelfOH25n08m8NJTTVDYtVJqYFrfAoKpbnY-8wbVV2iqjKdNcYEap4EIQixvFWlHpitTK4A4YPSpmO13r1Upuglur8C69cvJ74cNCqpCc6UFaU4u2aRhVHWdAlAYuwHaGacytFjxrne60NsG_bCEmufLbMOTnS4opayohKMnU2Y7KXxNjgO7XlWD5lZbk8ietzJ7v2GhcykH44R_4E4kRlcI</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Shen, Yuming</creator><creator>Xu, Jiayin</creator><creator>Wang, Xuli</creator><creator>Guo, Wenzhang</creator><creator>Zhou, Yuanke</creator><creator>Feng, Peiru</creator><creator>Zhang, Mengyuan</creator><creator>Xu, Haoran</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-1667-4655</orcidid></search><sort><creationdate>20240401</creationdate><title>Collaborative hierarchical scheduling model of interconnected multi-microgrid and ADN considering DR with different strategies</title><author>Shen, Yuming ; Xu, Jiayin ; Wang, Xuli ; Guo, Wenzhang ; Zhou, Yuanke ; Feng, Peiru ; Zhang, Mengyuan ; Xu, Haoran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-89e2b1c909e4e269be26e2b06dabdacb34b57043375771d08a4972b216ac0fe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Collaboration</topic><topic>Distributed generation</topic><topic>Operating costs</topic><topic>Optimization models</topic><topic>Scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yuming</creatorcontrib><creatorcontrib>Xu, Jiayin</creatorcontrib><creatorcontrib>Wang, Xuli</creatorcontrib><creatorcontrib>Guo, Wenzhang</creatorcontrib><creatorcontrib>Zhou, Yuanke</creatorcontrib><creatorcontrib>Feng, Peiru</creatorcontrib><creatorcontrib>Zhang, Mengyuan</creatorcontrib><creatorcontrib>Xu, Haoran</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yuming</au><au>Xu, Jiayin</au><au>Wang, Xuli</au><au>Guo, Wenzhang</au><au>Zhou, Yuanke</au><au>Feng, Peiru</au><au>Zhang, Mengyuan</au><au>Xu, Haoran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative hierarchical scheduling model of interconnected multi-microgrid and ADN considering DR with different strategies</atitle><jtitle>AIP advances</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>14</volume><issue>4</issue><spage>045115</spage><epage>045115-12</epage><pages>045115-045115-12</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>The demand response (DR) resources of multiple entities have different operation strategies, which makes it difficult to realize the co-optimization. This paper proposes a cooperative hierarchical scheduling optimization model of interconnected multi-microgrid and an active distribution network (ADN) considering DR with different operation strategies. First, the collaborative hierarchical scheduling framework is proposed and the interaction characteristics and cooperative scheduling mode of multi-interconnected microgrid and ADN are analyzed. Second, the two-layer cooperative hierarchical scheduling model is established, considering DR with different strategies. The upper layer model takes the minimum operating cost of the ADN as the objective to optimize the trading tariff between the ADN and microgrids, and its own DR, while the lower layer model takes the operating cost of multi-microgrid as the objective to optimize the purchasing and selling of electrical energy for the ADN, the DR, and the interaction power. Finally, the case studies with three microgrids and an ADN are used to demonstrate the validity and effectiveness of the proposed model.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0185173</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0008-1667-4655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2024-04, Vol.14 (4), p.045115-045115-12
issn 2158-3226
2158-3226
language eng
recordid cdi_crossref_primary_10_1063_5_0185173
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Collaboration
Distributed generation
Operating costs
Optimization models
Scheduling
title Collaborative hierarchical scheduling model of interconnected multi-microgrid and ADN considering DR with different strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20hierarchical%20scheduling%20model%20of%20interconnected%20multi-microgrid%20and%20ADN%20considering%20DR%20with%20different%20strategies&rft.jtitle=AIP%20advances&rft.au=Shen,%20Yuming&rft.date=2024-04-01&rft.volume=14&rft.issue=4&rft.spage=045115&rft.epage=045115-12&rft.pages=045115-045115-12&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0185173&rft_dat=%3Cproquest_cross%3E3034827731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034827731&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_dc6798843af54e1abe57edfc4b05db75&rfr_iscdi=true