1 MeV electron irradiation effect and damage mechanism analysis of flexible GaInP/GaAs/InGaAs solar cells
In this study, the degradation behavior of flexible GaInP/GaAs/InGaAs (IMM3J) solar cells and their metamorphic subcells under 1 MeV electron irradiation was investigated. The remaining factors such as short-circuit current density (Jsc), open-circuit voltage (Voc), and maximum power (Pmax) were 95....
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2024-02, Vol.135 (5) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 135 |
creator | Wang, T. B. Wang, Z. X. Zhang, S. Y. Li, M. Tang, G. H. Zhuang, Y. Yang, X. Aierken, A. |
description | In this study, the degradation behavior of flexible GaInP/GaAs/InGaAs (IMM3J) solar cells and their metamorphic subcells under 1 MeV electron irradiation was investigated. The remaining factors such as short-circuit current density (Jsc), open-circuit voltage (Voc), and maximum power (Pmax) were 95.62, 85.52, and 79.73%, respectively, at an irradiation fluence of 2 × 1015 e/cm2. The spectral responses of the InGaAs and GaAs subcells degraded significantly, and the InGaAs subcell experienced greater degradation than the GaAs subcell after irradiation. In addition, the current-limiting unit was switched from GaInP to InGaAs after irradiation. Defect analysis by deep-level transient spectroscopy (DLTS) revealed that with increasing irradiation fluence, the defects that had the greatest impact on the performance of GaAs subcells were EV + 0.36 and EV + 0.42 eV. For InGaAs subcells, the defects that had the greatest impact on the performance were EV + 0.29 and EV + 0.24 eV. The decrease in the minority carrier lifetime is the main reason for the decrease in the electrical performance of solar cells, and the variation in the effective minority carrier lifetime (τeff) in the subcells with the irradiation fluence was calculated based on the DLTS results. At a fluence of 2 × 1015 e/cm2, the τeff of the GaAs and InGaAs subcells decreased from 2.93 × 10−10 and 9.10 × 10−10 s to 1.56 × 10−11 and 1.60 × 10−12 s, respectively. These results provide a reference for predicting the degradation of short-circuit current and open-circuit voltage of flexible IMM3J. |
doi_str_mv | 10.1063/5.0184770 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0184770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921283963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-c8d1189fcfc7679df49f1fcda1021bc968eb77f9e13024f867a243cb291765d93</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWKsL3yDgSmHaJHNJsizF1kJFF-o2ZHLR1MxMTaZgd259TZ_E1Hbt6vwcPn7OOQBcYjTCqMrH5QhhVlCKjsAAI8YzWpboGAwQIjhjnPJTcBbjCiGMWc4H4B3_fH3fmxdovFF96FroQpDayd6l21ibXChbDbVs5KuBjVFvsnWxSab02-gi7Cy03ny62hs4l4v2cTyXkzhetDuBsfMyQGW8j-fgxEofzcVBh-B5dvs0vcuWD_PFdLLMFGG0zxTTKRy3yipaUa5twS22SkucOtSKV8zUlFpucI5IYVlFJSlyVROOaVVqng_B1f7vOnQfGxN7seo2IcWNgnCCSSpe5Ym63lMqdDEGY8U6uEaGrcBI7LYUpThsmdibPRuV6_-m-Qf-BTspc-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921283963</pqid></control><display><type>article</type><title>1 MeV electron irradiation effect and damage mechanism analysis of flexible GaInP/GaAs/InGaAs solar cells</title><source>Alma/SFX Local Collection</source><creator>Wang, T. B. ; Wang, Z. X. ; Zhang, S. Y. ; Li, M. ; Tang, G. H. ; Zhuang, Y. ; Yang, X. ; Aierken, A.</creator><creatorcontrib>Wang, T. B. ; Wang, Z. X. ; Zhang, S. Y. ; Li, M. ; Tang, G. H. ; Zhuang, Y. ; Yang, X. ; Aierken, A.</creatorcontrib><description>In this study, the degradation behavior of flexible GaInP/GaAs/InGaAs (IMM3J) solar cells and their metamorphic subcells under 1 MeV electron irradiation was investigated. The remaining factors such as short-circuit current density (Jsc), open-circuit voltage (Voc), and maximum power (Pmax) were 95.62, 85.52, and 79.73%, respectively, at an irradiation fluence of 2 × 1015 e/cm2. The spectral responses of the InGaAs and GaAs subcells degraded significantly, and the InGaAs subcell experienced greater degradation than the GaAs subcell after irradiation. In addition, the current-limiting unit was switched from GaInP to InGaAs after irradiation. Defect analysis by deep-level transient spectroscopy (DLTS) revealed that with increasing irradiation fluence, the defects that had the greatest impact on the performance of GaAs subcells were EV + 0.36 and EV + 0.42 eV. For InGaAs subcells, the defects that had the greatest impact on the performance were EV + 0.29 and EV + 0.24 eV. The decrease in the minority carrier lifetime is the main reason for the decrease in the electrical performance of solar cells, and the variation in the effective minority carrier lifetime (τeff) in the subcells with the irradiation fluence was calculated based on the DLTS results. At a fluence of 2 × 1015 e/cm2, the τeff of the GaAs and InGaAs subcells decreased from 2.93 × 10−10 and 9.10 × 10−10 s to 1.56 × 10−11 and 1.60 × 10−12 s, respectively. These results provide a reference for predicting the degradation of short-circuit current and open-circuit voltage of flexible IMM3J.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0184770</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carrier lifetime ; Deep level transient spectroscopy ; Defects ; Degradation ; Electron irradiation ; Fluence ; Gallium arsenide ; Gallium indium phosphide ; Indium gallium arsenides ; Mathematical analysis ; Maximum power ; Minority carriers ; Open circuit voltage ; Photovoltaic cells ; Radiation damage ; Short circuit currents ; Solar cells</subject><ispartof>Journal of applied physics, 2024-02, Vol.135 (5)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-c8d1189fcfc7679df49f1fcda1021bc968eb77f9e13024f867a243cb291765d93</cites><orcidid>0000-0001-5172-949X ; 0000-0003-2486-9635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, T. B.</creatorcontrib><creatorcontrib>Wang, Z. X.</creatorcontrib><creatorcontrib>Zhang, S. Y.</creatorcontrib><creatorcontrib>Li, M.</creatorcontrib><creatorcontrib>Tang, G. H.</creatorcontrib><creatorcontrib>Zhuang, Y.</creatorcontrib><creatorcontrib>Yang, X.</creatorcontrib><creatorcontrib>Aierken, A.</creatorcontrib><title>1 MeV electron irradiation effect and damage mechanism analysis of flexible GaInP/GaAs/InGaAs solar cells</title><title>Journal of applied physics</title><description>In this study, the degradation behavior of flexible GaInP/GaAs/InGaAs (IMM3J) solar cells and their metamorphic subcells under 1 MeV electron irradiation was investigated. The remaining factors such as short-circuit current density (Jsc), open-circuit voltage (Voc), and maximum power (Pmax) were 95.62, 85.52, and 79.73%, respectively, at an irradiation fluence of 2 × 1015 e/cm2. The spectral responses of the InGaAs and GaAs subcells degraded significantly, and the InGaAs subcell experienced greater degradation than the GaAs subcell after irradiation. In addition, the current-limiting unit was switched from GaInP to InGaAs after irradiation. Defect analysis by deep-level transient spectroscopy (DLTS) revealed that with increasing irradiation fluence, the defects that had the greatest impact on the performance of GaAs subcells were EV + 0.36 and EV + 0.42 eV. For InGaAs subcells, the defects that had the greatest impact on the performance were EV + 0.29 and EV + 0.24 eV. The decrease in the minority carrier lifetime is the main reason for the decrease in the electrical performance of solar cells, and the variation in the effective minority carrier lifetime (τeff) in the subcells with the irradiation fluence was calculated based on the DLTS results. At a fluence of 2 × 1015 e/cm2, the τeff of the GaAs and InGaAs subcells decreased from 2.93 × 10−10 and 9.10 × 10−10 s to 1.56 × 10−11 and 1.60 × 10−12 s, respectively. These results provide a reference for predicting the degradation of short-circuit current and open-circuit voltage of flexible IMM3J.</description><subject>Carrier lifetime</subject><subject>Deep level transient spectroscopy</subject><subject>Defects</subject><subject>Degradation</subject><subject>Electron irradiation</subject><subject>Fluence</subject><subject>Gallium arsenide</subject><subject>Gallium indium phosphide</subject><subject>Indium gallium arsenides</subject><subject>Mathematical analysis</subject><subject>Maximum power</subject><subject>Minority carriers</subject><subject>Open circuit voltage</subject><subject>Photovoltaic cells</subject><subject>Radiation damage</subject><subject>Short circuit currents</subject><subject>Solar cells</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEYhYMoWKsL3yDgSmHaJHNJsizF1kJFF-o2ZHLR1MxMTaZgd259TZ_E1Hbt6vwcPn7OOQBcYjTCqMrH5QhhVlCKjsAAI8YzWpboGAwQIjhjnPJTcBbjCiGMWc4H4B3_fH3fmxdovFF96FroQpDayd6l21ibXChbDbVs5KuBjVFvsnWxSab02-gi7Cy03ny62hs4l4v2cTyXkzhetDuBsfMyQGW8j-fgxEofzcVBh-B5dvs0vcuWD_PFdLLMFGG0zxTTKRy3yipaUa5twS22SkucOtSKV8zUlFpucI5IYVlFJSlyVROOaVVqng_B1f7vOnQfGxN7seo2IcWNgnCCSSpe5Ym63lMqdDEGY8U6uEaGrcBI7LYUpThsmdibPRuV6_-m-Qf-BTspc-o</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Wang, T. B.</creator><creator>Wang, Z. X.</creator><creator>Zhang, S. Y.</creator><creator>Li, M.</creator><creator>Tang, G. H.</creator><creator>Zhuang, Y.</creator><creator>Yang, X.</creator><creator>Aierken, A.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5172-949X</orcidid><orcidid>https://orcid.org/0000-0003-2486-9635</orcidid></search><sort><creationdate>20240207</creationdate><title>1 MeV electron irradiation effect and damage mechanism analysis of flexible GaInP/GaAs/InGaAs solar cells</title><author>Wang, T. B. ; Wang, Z. X. ; Zhang, S. Y. ; Li, M. ; Tang, G. H. ; Zhuang, Y. ; Yang, X. ; Aierken, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-c8d1189fcfc7679df49f1fcda1021bc968eb77f9e13024f867a243cb291765d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier lifetime</topic><topic>Deep level transient spectroscopy</topic><topic>Defects</topic><topic>Degradation</topic><topic>Electron irradiation</topic><topic>Fluence</topic><topic>Gallium arsenide</topic><topic>Gallium indium phosphide</topic><topic>Indium gallium arsenides</topic><topic>Mathematical analysis</topic><topic>Maximum power</topic><topic>Minority carriers</topic><topic>Open circuit voltage</topic><topic>Photovoltaic cells</topic><topic>Radiation damage</topic><topic>Short circuit currents</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, T. B.</creatorcontrib><creatorcontrib>Wang, Z. X.</creatorcontrib><creatorcontrib>Zhang, S. Y.</creatorcontrib><creatorcontrib>Li, M.</creatorcontrib><creatorcontrib>Tang, G. H.</creatorcontrib><creatorcontrib>Zhuang, Y.</creatorcontrib><creatorcontrib>Yang, X.</creatorcontrib><creatorcontrib>Aierken, A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, T. B.</au><au>Wang, Z. X.</au><au>Zhang, S. Y.</au><au>Li, M.</au><au>Tang, G. H.</au><au>Zhuang, Y.</au><au>Yang, X.</au><au>Aierken, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1 MeV electron irradiation effect and damage mechanism analysis of flexible GaInP/GaAs/InGaAs solar cells</atitle><jtitle>Journal of applied physics</jtitle><date>2024-02-07</date><risdate>2024</risdate><volume>135</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this study, the degradation behavior of flexible GaInP/GaAs/InGaAs (IMM3J) solar cells and their metamorphic subcells under 1 MeV electron irradiation was investigated. The remaining factors such as short-circuit current density (Jsc), open-circuit voltage (Voc), and maximum power (Pmax) were 95.62, 85.52, and 79.73%, respectively, at an irradiation fluence of 2 × 1015 e/cm2. The spectral responses of the InGaAs and GaAs subcells degraded significantly, and the InGaAs subcell experienced greater degradation than the GaAs subcell after irradiation. In addition, the current-limiting unit was switched from GaInP to InGaAs after irradiation. Defect analysis by deep-level transient spectroscopy (DLTS) revealed that with increasing irradiation fluence, the defects that had the greatest impact on the performance of GaAs subcells were EV + 0.36 and EV + 0.42 eV. For InGaAs subcells, the defects that had the greatest impact on the performance were EV + 0.29 and EV + 0.24 eV. The decrease in the minority carrier lifetime is the main reason for the decrease in the electrical performance of solar cells, and the variation in the effective minority carrier lifetime (τeff) in the subcells with the irradiation fluence was calculated based on the DLTS results. At a fluence of 2 × 1015 e/cm2, the τeff of the GaAs and InGaAs subcells decreased from 2.93 × 10−10 and 9.10 × 10−10 s to 1.56 × 10−11 and 1.60 × 10−12 s, respectively. These results provide a reference for predicting the degradation of short-circuit current and open-circuit voltage of flexible IMM3J.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0184770</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5172-949X</orcidid><orcidid>https://orcid.org/0000-0003-2486-9635</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-02, Vol.135 (5) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0184770 |
source | Alma/SFX Local Collection |
subjects | Carrier lifetime Deep level transient spectroscopy Defects Degradation Electron irradiation Fluence Gallium arsenide Gallium indium phosphide Indium gallium arsenides Mathematical analysis Maximum power Minority carriers Open circuit voltage Photovoltaic cells Radiation damage Short circuit currents Solar cells |
title | 1 MeV electron irradiation effect and damage mechanism analysis of flexible GaInP/GaAs/InGaAs solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1%E2%80%89MeV%20electron%20irradiation%20effect%20and%20damage%20mechanism%20analysis%20of%20flexible%20GaInP/GaAs/InGaAs%20solar%20cells&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Wang,%20T.%20B.&rft.date=2024-02-07&rft.volume=135&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0184770&rft_dat=%3Cproquest_cross%3E2921283963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921283963&rft_id=info:pmid/&rfr_iscdi=true |