Modulation of the optical and transport properties of epitaxial SrNbO3 thin films by defect engineering
The discovery of strontium niobate (SNO) as a potentially new transparent electrode has generated much interest due to its implications in various optoelectronic devices. Pristine SNO exhibits exceptionally low resistivity (∼10−4 Ω cm) at room temperature. However, this low resistivity occurs due to...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2024-01, Vol.135 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 135 |
creator | Kumar, Shammi Ahammad, Jibril Das, Dip Kumar, Rakesh Dhar, Sankar Johari, Priya |
description | The discovery of strontium niobate (SNO) as a potentially new transparent electrode has generated much interest due to its implications in various optoelectronic devices. Pristine SNO exhibits exceptionally low resistivity (∼10−4 Ω cm) at room temperature. However, this low resistivity occurs due to large number of carrier concentration in the system, which significantly affects its optical transparency (∼40%) in the visible range and hinders its practical applications as a transparent electrode. Here, we show that modulating the growth kinetics via oxygen manipulation is a feasible approach to achieve the desired optoelectronic properties. In particular, epitaxial (001) SNO thin films are grown on (001) lanthanum aluminate by pulsed laser deposition at different oxygen partial pressures and are shown to improve the optical transparency from 40% to 72% (λ = 550 nm) at a marginal cost of electrical resistivity from 2.8 to 8.1 × 10−4 Ω cm. These changes are directly linked with the multi-valence Nb-states, as evidenced by x-ray photoelectron spectroscopy. Furthermore, the defect-engineered SNO films exhibit multiple electronic phases that include pure metallic, coexisting metal-semiconducting-like, and pure semiconducting-like phases as evidenced by low-temperature electrical transport measurements. The intriguing metal-semiconducting coexisting phase is thoroughly analyzed using both perpendicular and angle-dependent magnetoresistance measurements, further supported by a density functional theory-based first-principles study and the observed feature is explained by the quantum correction to the conductivity. Overall, this study shows an exciting avenue for altering the optical and transport properties of SNO epitaxial thin films for their practical use as a next-generation transparent electrode. |
doi_str_mv | 10.1063/5.0179267 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0179267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2910688381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-4f67c31c84ed36d1022b9314a741a49659febf10e68213f9316ff3810b2b2bca3</originalsourceid><addsrcrecordid>eNp9kEtPAyEQgInRxFo9-A9IPGmylYF9wNE0vpJqD-p5w7JQabawAk3sv5emPZs5zGG-eX0IXQOZAanZfTUj0AhaNydoAoSLoqkqcoomhFAouGjEObqIcU0IAGdiglZvvt8OMlnvsDc4fWvsx2SVHLB0PU5Bujj6kPAY_KhDsjruOT3aJH9tpj7Ce7dkudE6bOywibjb4V4brRLWbmWd1sG61SU6M3KI-uqYp-jr6fFz_lIsls-v84dFoShvUlGaulEMFC91z-oeCKWdYFDKpgRZiroSRncGiK45BWZyqTaGcSAdzaEkm6Kbw9x8789Wx9Su_Ta4vLKlIhviPNOZuj1QKvgYgzbtGOxGhl0LpN17bKv26DGzdwc2qvzzXtQ_8B_4uXJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910688381</pqid></control><display><type>article</type><title>Modulation of the optical and transport properties of epitaxial SrNbO3 thin films by defect engineering</title><source>Alma/SFX Local Collection</source><creator>Kumar, Shammi ; Ahammad, Jibril ; Das, Dip ; Kumar, Rakesh ; Dhar, Sankar ; Johari, Priya</creator><creatorcontrib>Kumar, Shammi ; Ahammad, Jibril ; Das, Dip ; Kumar, Rakesh ; Dhar, Sankar ; Johari, Priya</creatorcontrib><description>The discovery of strontium niobate (SNO) as a potentially new transparent electrode has generated much interest due to its implications in various optoelectronic devices. Pristine SNO exhibits exceptionally low resistivity (∼10−4 Ω cm) at room temperature. However, this low resistivity occurs due to large number of carrier concentration in the system, which significantly affects its optical transparency (∼40%) in the visible range and hinders its practical applications as a transparent electrode. Here, we show that modulating the growth kinetics via oxygen manipulation is a feasible approach to achieve the desired optoelectronic properties. In particular, epitaxial (001) SNO thin films are grown on (001) lanthanum aluminate by pulsed laser deposition at different oxygen partial pressures and are shown to improve the optical transparency from 40% to 72% (λ = 550 nm) at a marginal cost of electrical resistivity from 2.8 to 8.1 × 10−4 Ω cm. These changes are directly linked with the multi-valence Nb-states, as evidenced by x-ray photoelectron spectroscopy. Furthermore, the defect-engineered SNO films exhibit multiple electronic phases that include pure metallic, coexisting metal-semiconducting-like, and pure semiconducting-like phases as evidenced by low-temperature electrical transport measurements. The intriguing metal-semiconducting coexisting phase is thoroughly analyzed using both perpendicular and angle-dependent magnetoresistance measurements, further supported by a density functional theory-based first-principles study and the observed feature is explained by the quantum correction to the conductivity. Overall, this study shows an exciting avenue for altering the optical and transport properties of SNO epitaxial thin films for their practical use as a next-generation transparent electrode.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0179267</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carrier density ; Defects ; Density functional theory ; Electrical resistivity ; Electrodes ; Epitaxial growth ; First principles ; Lanthanum ; Low temperature ; Magnetoresistance ; Magnetoresistivity ; Optical properties ; Optoelectronic devices ; Oxygen ; Photoelectrons ; Pulsed laser deposition ; Pulsed lasers ; Room temperature ; Thin films ; Transport properties ; X ray photoelectron spectroscopy</subject><ispartof>Journal of applied physics, 2024-01, Vol.135 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-4f67c31c84ed36d1022b9314a741a49659febf10e68213f9316ff3810b2b2bca3</cites><orcidid>0000-0002-2166-6747 ; 0000-0001-8348-4829 ; 0000-0003-1213-1406 ; 0000-0002-4199-8001 ; 0000-0002-8130-6348 ; 0000-0002-5589-5951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Shammi</creatorcontrib><creatorcontrib>Ahammad, Jibril</creatorcontrib><creatorcontrib>Das, Dip</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Dhar, Sankar</creatorcontrib><creatorcontrib>Johari, Priya</creatorcontrib><title>Modulation of the optical and transport properties of epitaxial SrNbO3 thin films by defect engineering</title><title>Journal of applied physics</title><description>The discovery of strontium niobate (SNO) as a potentially new transparent electrode has generated much interest due to its implications in various optoelectronic devices. Pristine SNO exhibits exceptionally low resistivity (∼10−4 Ω cm) at room temperature. However, this low resistivity occurs due to large number of carrier concentration in the system, which significantly affects its optical transparency (∼40%) in the visible range and hinders its practical applications as a transparent electrode. Here, we show that modulating the growth kinetics via oxygen manipulation is a feasible approach to achieve the desired optoelectronic properties. In particular, epitaxial (001) SNO thin films are grown on (001) lanthanum aluminate by pulsed laser deposition at different oxygen partial pressures and are shown to improve the optical transparency from 40% to 72% (λ = 550 nm) at a marginal cost of electrical resistivity from 2.8 to 8.1 × 10−4 Ω cm. These changes are directly linked with the multi-valence Nb-states, as evidenced by x-ray photoelectron spectroscopy. Furthermore, the defect-engineered SNO films exhibit multiple electronic phases that include pure metallic, coexisting metal-semiconducting-like, and pure semiconducting-like phases as evidenced by low-temperature electrical transport measurements. The intriguing metal-semiconducting coexisting phase is thoroughly analyzed using both perpendicular and angle-dependent magnetoresistance measurements, further supported by a density functional theory-based first-principles study and the observed feature is explained by the quantum correction to the conductivity. Overall, this study shows an exciting avenue for altering the optical and transport properties of SNO epitaxial thin films for their practical use as a next-generation transparent electrode.</description><subject>Applied physics</subject><subject>Carrier density</subject><subject>Defects</subject><subject>Density functional theory</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Epitaxial growth</subject><subject>First principles</subject><subject>Lanthanum</subject><subject>Low temperature</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Oxygen</subject><subject>Photoelectrons</subject><subject>Pulsed laser deposition</subject><subject>Pulsed lasers</subject><subject>Room temperature</subject><subject>Thin films</subject><subject>Transport properties</subject><subject>X ray photoelectron spectroscopy</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPAyEQgInRxFo9-A9IPGmylYF9wNE0vpJqD-p5w7JQabawAk3sv5emPZs5zGG-eX0IXQOZAanZfTUj0AhaNydoAoSLoqkqcoomhFAouGjEObqIcU0IAGdiglZvvt8OMlnvsDc4fWvsx2SVHLB0PU5Bujj6kPAY_KhDsjruOT3aJH9tpj7Ce7dkudE6bOywibjb4V4brRLWbmWd1sG61SU6M3KI-uqYp-jr6fFz_lIsls-v84dFoShvUlGaulEMFC91z-oeCKWdYFDKpgRZiroSRncGiK45BWZyqTaGcSAdzaEkm6Kbw9x8789Wx9Su_Ta4vLKlIhviPNOZuj1QKvgYgzbtGOxGhl0LpN17bKv26DGzdwc2qvzzXtQ_8B_4uXJg</recordid><startdate>20240107</startdate><enddate>20240107</enddate><creator>Kumar, Shammi</creator><creator>Ahammad, Jibril</creator><creator>Das, Dip</creator><creator>Kumar, Rakesh</creator><creator>Dhar, Sankar</creator><creator>Johari, Priya</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2166-6747</orcidid><orcidid>https://orcid.org/0000-0001-8348-4829</orcidid><orcidid>https://orcid.org/0000-0003-1213-1406</orcidid><orcidid>https://orcid.org/0000-0002-4199-8001</orcidid><orcidid>https://orcid.org/0000-0002-8130-6348</orcidid><orcidid>https://orcid.org/0000-0002-5589-5951</orcidid></search><sort><creationdate>20240107</creationdate><title>Modulation of the optical and transport properties of epitaxial SrNbO3 thin films by defect engineering</title><author>Kumar, Shammi ; Ahammad, Jibril ; Das, Dip ; Kumar, Rakesh ; Dhar, Sankar ; Johari, Priya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-4f67c31c84ed36d1022b9314a741a49659febf10e68213f9316ff3810b2b2bca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied physics</topic><topic>Carrier density</topic><topic>Defects</topic><topic>Density functional theory</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Epitaxial growth</topic><topic>First principles</topic><topic>Lanthanum</topic><topic>Low temperature</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Oxygen</topic><topic>Photoelectrons</topic><topic>Pulsed laser deposition</topic><topic>Pulsed lasers</topic><topic>Room temperature</topic><topic>Thin films</topic><topic>Transport properties</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Shammi</creatorcontrib><creatorcontrib>Ahammad, Jibril</creatorcontrib><creatorcontrib>Das, Dip</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Dhar, Sankar</creatorcontrib><creatorcontrib>Johari, Priya</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Shammi</au><au>Ahammad, Jibril</au><au>Das, Dip</au><au>Kumar, Rakesh</au><au>Dhar, Sankar</au><au>Johari, Priya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of the optical and transport properties of epitaxial SrNbO3 thin films by defect engineering</atitle><jtitle>Journal of applied physics</jtitle><date>2024-01-07</date><risdate>2024</risdate><volume>135</volume><issue>1</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The discovery of strontium niobate (SNO) as a potentially new transparent electrode has generated much interest due to its implications in various optoelectronic devices. Pristine SNO exhibits exceptionally low resistivity (∼10−4 Ω cm) at room temperature. However, this low resistivity occurs due to large number of carrier concentration in the system, which significantly affects its optical transparency (∼40%) in the visible range and hinders its practical applications as a transparent electrode. Here, we show that modulating the growth kinetics via oxygen manipulation is a feasible approach to achieve the desired optoelectronic properties. In particular, epitaxial (001) SNO thin films are grown on (001) lanthanum aluminate by pulsed laser deposition at different oxygen partial pressures and are shown to improve the optical transparency from 40% to 72% (λ = 550 nm) at a marginal cost of electrical resistivity from 2.8 to 8.1 × 10−4 Ω cm. These changes are directly linked with the multi-valence Nb-states, as evidenced by x-ray photoelectron spectroscopy. Furthermore, the defect-engineered SNO films exhibit multiple electronic phases that include pure metallic, coexisting metal-semiconducting-like, and pure semiconducting-like phases as evidenced by low-temperature electrical transport measurements. The intriguing metal-semiconducting coexisting phase is thoroughly analyzed using both perpendicular and angle-dependent magnetoresistance measurements, further supported by a density functional theory-based first-principles study and the observed feature is explained by the quantum correction to the conductivity. Overall, this study shows an exciting avenue for altering the optical and transport properties of SNO epitaxial thin films for their practical use as a next-generation transparent electrode.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0179267</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2166-6747</orcidid><orcidid>https://orcid.org/0000-0001-8348-4829</orcidid><orcidid>https://orcid.org/0000-0003-1213-1406</orcidid><orcidid>https://orcid.org/0000-0002-4199-8001</orcidid><orcidid>https://orcid.org/0000-0002-8130-6348</orcidid><orcidid>https://orcid.org/0000-0002-5589-5951</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-01, Vol.135 (1) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0179267 |
source | Alma/SFX Local Collection |
subjects | Applied physics Carrier density Defects Density functional theory Electrical resistivity Electrodes Epitaxial growth First principles Lanthanum Low temperature Magnetoresistance Magnetoresistivity Optical properties Optoelectronic devices Oxygen Photoelectrons Pulsed laser deposition Pulsed lasers Room temperature Thin films Transport properties X ray photoelectron spectroscopy |
title | Modulation of the optical and transport properties of epitaxial SrNbO3 thin films by defect engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20the%20optical%20and%20transport%20properties%20of%20epitaxial%20SrNbO3%20thin%20films%20by%20defect%20engineering&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kumar,%20Shammi&rft.date=2024-01-07&rft.volume=135&rft.issue=1&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0179267&rft_dat=%3Cproquest_cross%3E2910688381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2910688381&rft_id=info:pmid/&rfr_iscdi=true |