First indirect drive inertial confinement fusion campaign at Laser Megajoule

The first indirect drive Inertial Confinement Fusion (ICF) experiments on the Laser Megajoule facility were carried out with approximately 150 kJ of laser energy distributed on 48 beams (12 quads) arranged in two cones. The target consisted of a gold vacuum rugby-shaped hohlraum and a plastic capsul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2023-12, Vol.30 (12)
Hauptverfasser: Liberatore, S., Gauthier, P., Willien, J. L., Masson-Laborde, P. E., Philippe, F., Poujade, O., Alozy, E., Botrel, R., Boutoux, G., Bray, J., Caillaud, T., Chicanne, C., Chollet, C., Debayle, A., Depierreux, S., Duchastenier, W., Ferri, M., Henry, O., Hoch, P., Laffite, S., Landoas, O., Le-Deroff, L., Lefebvre, E., Legay, G., Marmajou, I., Meyer, C., Molina, K., Morice, O., Peche, E., Prunet, P., Riquier, R., Rosch, R., Tassin, V., Vaisseau, X., Villette, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physics of plasmas
container_volume 30
creator Liberatore, S.
Gauthier, P.
Willien, J. L.
Masson-Laborde, P. E.
Philippe, F.
Poujade, O.
Alozy, E.
Botrel, R.
Boutoux, G.
Bray, J.
Caillaud, T.
Chicanne, C.
Chollet, C.
Debayle, A.
Depierreux, S.
Duchastenier, W.
Ferri, M.
Henry, O.
Hoch, P.
Laffite, S.
Landoas, O.
Le-Deroff, L.
Lefebvre, E.
Legay, G.
Marmajou, I.
Meyer, C.
Molina, K.
Morice, O.
Peche, E.
Prunet, P.
Riquier, R.
Rosch, R.
Tassin, V.
Vaisseau, X.
Villette, B.
description The first indirect drive Inertial Confinement Fusion (ICF) experiments on the Laser Megajoule facility were carried out with approximately 150 kJ of laser energy distributed on 48 beams (12 quads) arranged in two cones. The target consisted of a gold vacuum rugby-shaped hohlraum and a plastic capsule located at its center, filled with deuterium gas fuel. The arrangement of the 12 quads is such that the laser irradiation on the wall generated a three-dimensional (3D) x-ray flux around the capsule creating 3D deformations on the imploding plastic shell. This constraint forced the design of a robust target (relatively thin ablator, around 40   μm) driven by a short laser pulse (3 ns) that delivered about 1011 neutrons. Full-integrated 3D radiation hydrodynamics simulations allowed both the target definition and the data interpretation (mainly radiation temperature, x-ray images, and neutron yield). 3D calculations and experiments compare well.
doi_str_mv 10.1063/5.0176446
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0176446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904736834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-41ac47089dcdd3a03d5b624345f2659cebab2cb304fbb7f1b3131cee4d0e20033</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAlcLUm8cknaUUq8KIGwV3Ic-S0s7UJBX896bUtat7D3zcc89B6JrAjIBg9-0MiBScixM0ITDvGikkPz3sEhoh-Oc5ush5DQBctPMJ6pcx5YLj4GLytmCX4rev0qcS9QbbcQhVbP1QcNjnOA7Y6u1Ox9WAdcG9zj7hV7_S63G_8ZfoLOhN9ld_c4o-lo_vi-emf3t6WTz0jaUdLQ0n2nJZn3PWOaaBudYIyhlvAxVtZ73RhlrDgAdjZCCGEUas99yBpwCMTdHN8e4ujV97n4uq9mmolop2wCUTc8YrdXukbBpzTj6oXYpbnX4UAXUoS7Xqr6zK3h3ZbGPRpeb8B_4FJ59pbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904736834</pqid></control><display><type>article</type><title>First indirect drive inertial confinement fusion campaign at Laser Megajoule</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liberatore, S. ; Gauthier, P. ; Willien, J. L. ; Masson-Laborde, P. E. ; Philippe, F. ; Poujade, O. ; Alozy, E. ; Botrel, R. ; Boutoux, G. ; Bray, J. ; Caillaud, T. ; Chicanne, C. ; Chollet, C. ; Debayle, A. ; Depierreux, S. ; Duchastenier, W. ; Ferri, M. ; Henry, O. ; Hoch, P. ; Laffite, S. ; Landoas, O. ; Le-Deroff, L. ; Lefebvre, E. ; Legay, G. ; Marmajou, I. ; Meyer, C. ; Molina, K. ; Morice, O. ; Peche, E. ; Prunet, P. ; Riquier, R. ; Rosch, R. ; Tassin, V. ; Vaisseau, X. ; Villette, B.</creator><creatorcontrib>Liberatore, S. ; Gauthier, P. ; Willien, J. L. ; Masson-Laborde, P. E. ; Philippe, F. ; Poujade, O. ; Alozy, E. ; Botrel, R. ; Boutoux, G. ; Bray, J. ; Caillaud, T. ; Chicanne, C. ; Chollet, C. ; Debayle, A. ; Depierreux, S. ; Duchastenier, W. ; Ferri, M. ; Henry, O. ; Hoch, P. ; Laffite, S. ; Landoas, O. ; Le-Deroff, L. ; Lefebvre, E. ; Legay, G. ; Marmajou, I. ; Meyer, C. ; Molina, K. ; Morice, O. ; Peche, E. ; Prunet, P. ; Riquier, R. ; Rosch, R. ; Tassin, V. ; Vaisseau, X. ; Villette, B.</creatorcontrib><description>The first indirect drive Inertial Confinement Fusion (ICF) experiments on the Laser Megajoule facility were carried out with approximately 150 kJ of laser energy distributed on 48 beams (12 quads) arranged in two cones. The target consisted of a gold vacuum rugby-shaped hohlraum and a plastic capsule located at its center, filled with deuterium gas fuel. The arrangement of the 12 quads is such that the laser irradiation on the wall generated a three-dimensional (3D) x-ray flux around the capsule creating 3D deformations on the imploding plastic shell. This constraint forced the design of a robust target (relatively thin ablator, around 40   μm) driven by a short laser pulse (3 ns) that delivered about 1011 neutrons. Full-integrated 3D radiation hydrodynamics simulations allowed both the target definition and the data interpretation (mainly radiation temperature, x-ray images, and neutron yield). 3D calculations and experiments compare well.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0176446</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Ablation ; Deuterium ; Inertial confinement fusion ; Plasma physics ; Plastic shells</subject><ispartof>Physics of plasmas, 2023-12, Vol.30 (12)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-41ac47089dcdd3a03d5b624345f2659cebab2cb304fbb7f1b3131cee4d0e20033</citedby><cites>FETCH-LOGICAL-c292t-41ac47089dcdd3a03d5b624345f2659cebab2cb304fbb7f1b3131cee4d0e20033</cites><orcidid>0009-0003-3424-1013 ; 0000-0001-9914-5805 ; 0009-0007-9046-8465 ; 0009-0002-1278-3674 ; 0000-0001-6549-7626 ; 0009-0008-8960-4236 ; 0000-0002-3490-8610 ; 0000-0002-4806-6338 ; 0000-0002-0581-8114 ; 0009-0002-5602-5613 ; 0009-0007-8044-9033 ; 0000-0003-2786-9382 ; 0000-0003-4819-3465 ; 0009-0008-9800-4021 ; 0000-0001-6342-3738 ; 0009-0008-0587-8265 ; 0009-0005-8104-1860 ; 0009-0005-1601-6757 ; 0009-0003-4763-0333 ; 0009-0002-7168-6102 ; 0000-0001-6849-7592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0176446$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Liberatore, S.</creatorcontrib><creatorcontrib>Gauthier, P.</creatorcontrib><creatorcontrib>Willien, J. L.</creatorcontrib><creatorcontrib>Masson-Laborde, P. E.</creatorcontrib><creatorcontrib>Philippe, F.</creatorcontrib><creatorcontrib>Poujade, O.</creatorcontrib><creatorcontrib>Alozy, E.</creatorcontrib><creatorcontrib>Botrel, R.</creatorcontrib><creatorcontrib>Boutoux, G.</creatorcontrib><creatorcontrib>Bray, J.</creatorcontrib><creatorcontrib>Caillaud, T.</creatorcontrib><creatorcontrib>Chicanne, C.</creatorcontrib><creatorcontrib>Chollet, C.</creatorcontrib><creatorcontrib>Debayle, A.</creatorcontrib><creatorcontrib>Depierreux, S.</creatorcontrib><creatorcontrib>Duchastenier, W.</creatorcontrib><creatorcontrib>Ferri, M.</creatorcontrib><creatorcontrib>Henry, O.</creatorcontrib><creatorcontrib>Hoch, P.</creatorcontrib><creatorcontrib>Laffite, S.</creatorcontrib><creatorcontrib>Landoas, O.</creatorcontrib><creatorcontrib>Le-Deroff, L.</creatorcontrib><creatorcontrib>Lefebvre, E.</creatorcontrib><creatorcontrib>Legay, G.</creatorcontrib><creatorcontrib>Marmajou, I.</creatorcontrib><creatorcontrib>Meyer, C.</creatorcontrib><creatorcontrib>Molina, K.</creatorcontrib><creatorcontrib>Morice, O.</creatorcontrib><creatorcontrib>Peche, E.</creatorcontrib><creatorcontrib>Prunet, P.</creatorcontrib><creatorcontrib>Riquier, R.</creatorcontrib><creatorcontrib>Rosch, R.</creatorcontrib><creatorcontrib>Tassin, V.</creatorcontrib><creatorcontrib>Vaisseau, X.</creatorcontrib><creatorcontrib>Villette, B.</creatorcontrib><title>First indirect drive inertial confinement fusion campaign at Laser Megajoule</title><title>Physics of plasmas</title><description>The first indirect drive Inertial Confinement Fusion (ICF) experiments on the Laser Megajoule facility were carried out with approximately 150 kJ of laser energy distributed on 48 beams (12 quads) arranged in two cones. The target consisted of a gold vacuum rugby-shaped hohlraum and a plastic capsule located at its center, filled with deuterium gas fuel. The arrangement of the 12 quads is such that the laser irradiation on the wall generated a three-dimensional (3D) x-ray flux around the capsule creating 3D deformations on the imploding plastic shell. This constraint forced the design of a robust target (relatively thin ablator, around 40   μm) driven by a short laser pulse (3 ns) that delivered about 1011 neutrons. Full-integrated 3D radiation hydrodynamics simulations allowed both the target definition and the data interpretation (mainly radiation temperature, x-ray images, and neutron yield). 3D calculations and experiments compare well.</description><subject>Ablation</subject><subject>Deuterium</subject><subject>Inertial confinement fusion</subject><subject>Plasma physics</subject><subject>Plastic shells</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAlcLUm8cknaUUq8KIGwV3Ic-S0s7UJBX896bUtat7D3zcc89B6JrAjIBg9-0MiBScixM0ITDvGikkPz3sEhoh-Oc5ush5DQBctPMJ6pcx5YLj4GLytmCX4rev0qcS9QbbcQhVbP1QcNjnOA7Y6u1Ox9WAdcG9zj7hV7_S63G_8ZfoLOhN9ld_c4o-lo_vi-emf3t6WTz0jaUdLQ0n2nJZn3PWOaaBudYIyhlvAxVtZ73RhlrDgAdjZCCGEUas99yBpwCMTdHN8e4ujV97n4uq9mmolop2wCUTc8YrdXukbBpzTj6oXYpbnX4UAXUoS7Xqr6zK3h3ZbGPRpeb8B_4FJ59pbQ</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Liberatore, S.</creator><creator>Gauthier, P.</creator><creator>Willien, J. L.</creator><creator>Masson-Laborde, P. E.</creator><creator>Philippe, F.</creator><creator>Poujade, O.</creator><creator>Alozy, E.</creator><creator>Botrel, R.</creator><creator>Boutoux, G.</creator><creator>Bray, J.</creator><creator>Caillaud, T.</creator><creator>Chicanne, C.</creator><creator>Chollet, C.</creator><creator>Debayle, A.</creator><creator>Depierreux, S.</creator><creator>Duchastenier, W.</creator><creator>Ferri, M.</creator><creator>Henry, O.</creator><creator>Hoch, P.</creator><creator>Laffite, S.</creator><creator>Landoas, O.</creator><creator>Le-Deroff, L.</creator><creator>Lefebvre, E.</creator><creator>Legay, G.</creator><creator>Marmajou, I.</creator><creator>Meyer, C.</creator><creator>Molina, K.</creator><creator>Morice, O.</creator><creator>Peche, E.</creator><creator>Prunet, P.</creator><creator>Riquier, R.</creator><creator>Rosch, R.</creator><creator>Tassin, V.</creator><creator>Vaisseau, X.</creator><creator>Villette, B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-3424-1013</orcidid><orcidid>https://orcid.org/0000-0001-9914-5805</orcidid><orcidid>https://orcid.org/0009-0007-9046-8465</orcidid><orcidid>https://orcid.org/0009-0002-1278-3674</orcidid><orcidid>https://orcid.org/0000-0001-6549-7626</orcidid><orcidid>https://orcid.org/0009-0008-8960-4236</orcidid><orcidid>https://orcid.org/0000-0002-3490-8610</orcidid><orcidid>https://orcid.org/0000-0002-4806-6338</orcidid><orcidid>https://orcid.org/0000-0002-0581-8114</orcidid><orcidid>https://orcid.org/0009-0002-5602-5613</orcidid><orcidid>https://orcid.org/0009-0007-8044-9033</orcidid><orcidid>https://orcid.org/0000-0003-2786-9382</orcidid><orcidid>https://orcid.org/0000-0003-4819-3465</orcidid><orcidid>https://orcid.org/0009-0008-9800-4021</orcidid><orcidid>https://orcid.org/0000-0001-6342-3738</orcidid><orcidid>https://orcid.org/0009-0008-0587-8265</orcidid><orcidid>https://orcid.org/0009-0005-8104-1860</orcidid><orcidid>https://orcid.org/0009-0005-1601-6757</orcidid><orcidid>https://orcid.org/0009-0003-4763-0333</orcidid><orcidid>https://orcid.org/0009-0002-7168-6102</orcidid><orcidid>https://orcid.org/0000-0001-6849-7592</orcidid></search><sort><creationdate>202312</creationdate><title>First indirect drive inertial confinement fusion campaign at Laser Megajoule</title><author>Liberatore, S. ; Gauthier, P. ; Willien, J. L. ; Masson-Laborde, P. E. ; Philippe, F. ; Poujade, O. ; Alozy, E. ; Botrel, R. ; Boutoux, G. ; Bray, J. ; Caillaud, T. ; Chicanne, C. ; Chollet, C. ; Debayle, A. ; Depierreux, S. ; Duchastenier, W. ; Ferri, M. ; Henry, O. ; Hoch, P. ; Laffite, S. ; Landoas, O. ; Le-Deroff, L. ; Lefebvre, E. ; Legay, G. ; Marmajou, I. ; Meyer, C. ; Molina, K. ; Morice, O. ; Peche, E. ; Prunet, P. ; Riquier, R. ; Rosch, R. ; Tassin, V. ; Vaisseau, X. ; Villette, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-41ac47089dcdd3a03d5b624345f2659cebab2cb304fbb7f1b3131cee4d0e20033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Deuterium</topic><topic>Inertial confinement fusion</topic><topic>Plasma physics</topic><topic>Plastic shells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liberatore, S.</creatorcontrib><creatorcontrib>Gauthier, P.</creatorcontrib><creatorcontrib>Willien, J. L.</creatorcontrib><creatorcontrib>Masson-Laborde, P. E.</creatorcontrib><creatorcontrib>Philippe, F.</creatorcontrib><creatorcontrib>Poujade, O.</creatorcontrib><creatorcontrib>Alozy, E.</creatorcontrib><creatorcontrib>Botrel, R.</creatorcontrib><creatorcontrib>Boutoux, G.</creatorcontrib><creatorcontrib>Bray, J.</creatorcontrib><creatorcontrib>Caillaud, T.</creatorcontrib><creatorcontrib>Chicanne, C.</creatorcontrib><creatorcontrib>Chollet, C.</creatorcontrib><creatorcontrib>Debayle, A.</creatorcontrib><creatorcontrib>Depierreux, S.</creatorcontrib><creatorcontrib>Duchastenier, W.</creatorcontrib><creatorcontrib>Ferri, M.</creatorcontrib><creatorcontrib>Henry, O.</creatorcontrib><creatorcontrib>Hoch, P.</creatorcontrib><creatorcontrib>Laffite, S.</creatorcontrib><creatorcontrib>Landoas, O.</creatorcontrib><creatorcontrib>Le-Deroff, L.</creatorcontrib><creatorcontrib>Lefebvre, E.</creatorcontrib><creatorcontrib>Legay, G.</creatorcontrib><creatorcontrib>Marmajou, I.</creatorcontrib><creatorcontrib>Meyer, C.</creatorcontrib><creatorcontrib>Molina, K.</creatorcontrib><creatorcontrib>Morice, O.</creatorcontrib><creatorcontrib>Peche, E.</creatorcontrib><creatorcontrib>Prunet, P.</creatorcontrib><creatorcontrib>Riquier, R.</creatorcontrib><creatorcontrib>Rosch, R.</creatorcontrib><creatorcontrib>Tassin, V.</creatorcontrib><creatorcontrib>Vaisseau, X.</creatorcontrib><creatorcontrib>Villette, B.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liberatore, S.</au><au>Gauthier, P.</au><au>Willien, J. L.</au><au>Masson-Laborde, P. E.</au><au>Philippe, F.</au><au>Poujade, O.</au><au>Alozy, E.</au><au>Botrel, R.</au><au>Boutoux, G.</au><au>Bray, J.</au><au>Caillaud, T.</au><au>Chicanne, C.</au><au>Chollet, C.</au><au>Debayle, A.</au><au>Depierreux, S.</au><au>Duchastenier, W.</au><au>Ferri, M.</au><au>Henry, O.</au><au>Hoch, P.</au><au>Laffite, S.</au><au>Landoas, O.</au><au>Le-Deroff, L.</au><au>Lefebvre, E.</au><au>Legay, G.</au><au>Marmajou, I.</au><au>Meyer, C.</au><au>Molina, K.</au><au>Morice, O.</au><au>Peche, E.</au><au>Prunet, P.</au><au>Riquier, R.</au><au>Rosch, R.</au><au>Tassin, V.</au><au>Vaisseau, X.</au><au>Villette, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First indirect drive inertial confinement fusion campaign at Laser Megajoule</atitle><jtitle>Physics of plasmas</jtitle><date>2023-12</date><risdate>2023</risdate><volume>30</volume><issue>12</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The first indirect drive Inertial Confinement Fusion (ICF) experiments on the Laser Megajoule facility were carried out with approximately 150 kJ of laser energy distributed on 48 beams (12 quads) arranged in two cones. The target consisted of a gold vacuum rugby-shaped hohlraum and a plastic capsule located at its center, filled with deuterium gas fuel. The arrangement of the 12 quads is such that the laser irradiation on the wall generated a three-dimensional (3D) x-ray flux around the capsule creating 3D deformations on the imploding plastic shell. This constraint forced the design of a robust target (relatively thin ablator, around 40   μm) driven by a short laser pulse (3 ns) that delivered about 1011 neutrons. Full-integrated 3D radiation hydrodynamics simulations allowed both the target definition and the data interpretation (mainly radiation temperature, x-ray images, and neutron yield). 3D calculations and experiments compare well.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0176446</doi><tpages>21</tpages><orcidid>https://orcid.org/0009-0003-3424-1013</orcidid><orcidid>https://orcid.org/0000-0001-9914-5805</orcidid><orcidid>https://orcid.org/0009-0007-9046-8465</orcidid><orcidid>https://orcid.org/0009-0002-1278-3674</orcidid><orcidid>https://orcid.org/0000-0001-6549-7626</orcidid><orcidid>https://orcid.org/0009-0008-8960-4236</orcidid><orcidid>https://orcid.org/0000-0002-3490-8610</orcidid><orcidid>https://orcid.org/0000-0002-4806-6338</orcidid><orcidid>https://orcid.org/0000-0002-0581-8114</orcidid><orcidid>https://orcid.org/0009-0002-5602-5613</orcidid><orcidid>https://orcid.org/0009-0007-8044-9033</orcidid><orcidid>https://orcid.org/0000-0003-2786-9382</orcidid><orcidid>https://orcid.org/0000-0003-4819-3465</orcidid><orcidid>https://orcid.org/0009-0008-9800-4021</orcidid><orcidid>https://orcid.org/0000-0001-6342-3738</orcidid><orcidid>https://orcid.org/0009-0008-0587-8265</orcidid><orcidid>https://orcid.org/0009-0005-8104-1860</orcidid><orcidid>https://orcid.org/0009-0005-1601-6757</orcidid><orcidid>https://orcid.org/0009-0003-4763-0333</orcidid><orcidid>https://orcid.org/0009-0002-7168-6102</orcidid><orcidid>https://orcid.org/0000-0001-6849-7592</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2023-12, Vol.30 (12)
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_5_0176446
source AIP Journals Complete; Alma/SFX Local Collection
subjects Ablation
Deuterium
Inertial confinement fusion
Plasma physics
Plastic shells
title First indirect drive inertial confinement fusion campaign at Laser Megajoule
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20indirect%20drive%20inertial%20confinement%20fusion%20campaign%20at%20Laser%20Megajoule&rft.jtitle=Physics%20of%20plasmas&rft.au=Liberatore,%20S.&rft.date=2023-12&rft.volume=30&rft.issue=12&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0176446&rft_dat=%3Cproquest_cross%3E2904736834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904736834&rft_id=info:pmid/&rfr_iscdi=true