On computational simulations of dynamic stall and its three-dimensional nature
In this paper, we investigate the three-dimensional nature of dynamic stall. Conducting the investigation, the flow around a harmonically pitching National Advisory Committee for Aeronautics (NACA) 0012 airfoil is numerically simulated using Unsteady-Reynolds-Averaged Navier–Stokes (URANS) and multi...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2023-10, Vol.35 (10) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 35 |
creator | Khalifa, Nabil M. Rezaei, Amirsaman Taha, Haithem E. |
description | In this paper, we investigate the three-dimensional nature of dynamic stall. Conducting the investigation, the flow around a harmonically pitching National Advisory Committee for Aeronautics (NACA) 0012 airfoil is numerically simulated using Unsteady-Reynolds-Averaged Navier–Stokes (URANS) and multiple detached eddy simulation (DES) solvers: the Delayed-DES (DDES) and the Improved-DDES (IDDES). Two- and three-dimensional simulations are performed for each solver, and the results are compared against experimental measurements in the literature. The results showed that three-dimensional simulations surpass two-dimensional ones in capturing the stages of dynamic stall and predicting the lift coefficient values, with a distinguished performance of the DES solvers over the URANS ones. For instance, the IDDES simulations, as an inherently three-dimensional solver, predicted the necessary cascaded amalgamation process of vortices to form the adequate strength of the dynamic stall vortex. This vortex size and timing provided accurate and sufficient suction that resulted in identical matching of the numerical and experimental lift coefficients at the peak value. Hence, the hypothesis that dynamic stall has a three-dimensional nature is supported by the superiority of the three-dimensional simulation in all aspects. In conclusion, it is found that dynamic stall is intrinsically a three-dimensional phenomenon. |
doi_str_mv | 10.1063/5.0170251 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0170251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879414147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-a7e4efc71833adbdc59f3842a3ff767acfda7d31f41fd58d4da00b95d53c1cc63</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK4e_AcBTwpdk6ZJ2qMsfsHiXvQcZvOBWdqmJulh_71du2eZw8wLzwzDg9AtJStKBHvkK0IlKTk9QwtK6qaQQojz4yxJIQSjl-gqpT0hhDWlWKCPbY916IYxQ_ahhxYn343tX0g4OGwOPXRe45ShbTH0BvuccP6O1hbGd7ZP81oPeYz2Gl04aJO9OfUl-np5_ly_FZvt6_v6aVNoVspcgLSVdVrSmjEwO6N541hdlcCck0KCdgakYdRV1Blem8oAIbuGG8401VqwJbqb7w4x_Iw2ZbUPY5z-SKqsZVPRqeRE3c-UjiGlaJ0aou8gHhQl6qhLcXXSNbEPM5u0n138A_8C2CZrLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879414147</pqid></control><display><type>article</type><title>On computational simulations of dynamic stall and its three-dimensional nature</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Khalifa, Nabil M. ; Rezaei, Amirsaman ; Taha, Haithem E.</creator><creatorcontrib>Khalifa, Nabil M. ; Rezaei, Amirsaman ; Taha, Haithem E.</creatorcontrib><description>In this paper, we investigate the three-dimensional nature of dynamic stall. Conducting the investigation, the flow around a harmonically pitching National Advisory Committee for Aeronautics (NACA) 0012 airfoil is numerically simulated using Unsteady-Reynolds-Averaged Navier–Stokes (URANS) and multiple detached eddy simulation (DES) solvers: the Delayed-DES (DDES) and the Improved-DDES (IDDES). Two- and three-dimensional simulations are performed for each solver, and the results are compared against experimental measurements in the literature. The results showed that three-dimensional simulations surpass two-dimensional ones in capturing the stages of dynamic stall and predicting the lift coefficient values, with a distinguished performance of the DES solvers over the URANS ones. For instance, the IDDES simulations, as an inherently three-dimensional solver, predicted the necessary cascaded amalgamation process of vortices to form the adequate strength of the dynamic stall vortex. This vortex size and timing provided accurate and sufficient suction that resulted in identical matching of the numerical and experimental lift coefficients at the peak value. Hence, the hypothesis that dynamic stall has a three-dimensional nature is supported by the superiority of the three-dimensional simulation in all aspects. In conclusion, it is found that dynamic stall is intrinsically a three-dimensional phenomenon.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0170251</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamic coefficients ; Aeronautics ; Detached eddy simulation ; Fluid dynamics ; Fluid flow ; Physics ; Reynolds averaged Navier-Stokes method ; Simulation ; Solvers ; Suction</subject><ispartof>Physics of fluids (1994), 2023-10, Vol.35 (10)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-a7e4efc71833adbdc59f3842a3ff767acfda7d31f41fd58d4da00b95d53c1cc63</citedby><cites>FETCH-LOGICAL-c327t-a7e4efc71833adbdc59f3842a3ff767acfda7d31f41fd58d4da00b95d53c1cc63</cites><orcidid>0000-0002-5541-2788 ; 0000-0002-9242-2045 ; 0000-0003-3838-5607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,791,4498,27905,27906</link.rule.ids></links><search><creatorcontrib>Khalifa, Nabil M.</creatorcontrib><creatorcontrib>Rezaei, Amirsaman</creatorcontrib><creatorcontrib>Taha, Haithem E.</creatorcontrib><title>On computational simulations of dynamic stall and its three-dimensional nature</title><title>Physics of fluids (1994)</title><description>In this paper, we investigate the three-dimensional nature of dynamic stall. Conducting the investigation, the flow around a harmonically pitching National Advisory Committee for Aeronautics (NACA) 0012 airfoil is numerically simulated using Unsteady-Reynolds-Averaged Navier–Stokes (URANS) and multiple detached eddy simulation (DES) solvers: the Delayed-DES (DDES) and the Improved-DDES (IDDES). Two- and three-dimensional simulations are performed for each solver, and the results are compared against experimental measurements in the literature. The results showed that three-dimensional simulations surpass two-dimensional ones in capturing the stages of dynamic stall and predicting the lift coefficient values, with a distinguished performance of the DES solvers over the URANS ones. For instance, the IDDES simulations, as an inherently three-dimensional solver, predicted the necessary cascaded amalgamation process of vortices to form the adequate strength of the dynamic stall vortex. This vortex size and timing provided accurate and sufficient suction that resulted in identical matching of the numerical and experimental lift coefficients at the peak value. Hence, the hypothesis that dynamic stall has a three-dimensional nature is supported by the superiority of the three-dimensional simulation in all aspects. In conclusion, it is found that dynamic stall is intrinsically a three-dimensional phenomenon.</description><subject>Aerodynamic coefficients</subject><subject>Aeronautics</subject><subject>Detached eddy simulation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Physics</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Simulation</subject><subject>Solvers</subject><subject>Suction</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK4e_AcBTwpdk6ZJ2qMsfsHiXvQcZvOBWdqmJulh_71du2eZw8wLzwzDg9AtJStKBHvkK0IlKTk9QwtK6qaQQojz4yxJIQSjl-gqpT0hhDWlWKCPbY916IYxQ_ahhxYn343tX0g4OGwOPXRe45ShbTH0BvuccP6O1hbGd7ZP81oPeYz2Gl04aJO9OfUl-np5_ly_FZvt6_v6aVNoVspcgLSVdVrSmjEwO6N541hdlcCck0KCdgakYdRV1Blem8oAIbuGG8401VqwJbqb7w4x_Iw2ZbUPY5z-SKqsZVPRqeRE3c-UjiGlaJ0aou8gHhQl6qhLcXXSNbEPM5u0n138A_8C2CZrLg</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Khalifa, Nabil M.</creator><creator>Rezaei, Amirsaman</creator><creator>Taha, Haithem E.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5541-2788</orcidid><orcidid>https://orcid.org/0000-0002-9242-2045</orcidid><orcidid>https://orcid.org/0000-0003-3838-5607</orcidid></search><sort><creationdate>202310</creationdate><title>On computational simulations of dynamic stall and its three-dimensional nature</title><author>Khalifa, Nabil M. ; Rezaei, Amirsaman ; Taha, Haithem E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-a7e4efc71833adbdc59f3842a3ff767acfda7d31f41fd58d4da00b95d53c1cc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerodynamic coefficients</topic><topic>Aeronautics</topic><topic>Detached eddy simulation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Physics</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Simulation</topic><topic>Solvers</topic><topic>Suction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalifa, Nabil M.</creatorcontrib><creatorcontrib>Rezaei, Amirsaman</creatorcontrib><creatorcontrib>Taha, Haithem E.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalifa, Nabil M.</au><au>Rezaei, Amirsaman</au><au>Taha, Haithem E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On computational simulations of dynamic stall and its three-dimensional nature</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-10</date><risdate>2023</risdate><volume>35</volume><issue>10</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>In this paper, we investigate the three-dimensional nature of dynamic stall. Conducting the investigation, the flow around a harmonically pitching National Advisory Committee for Aeronautics (NACA) 0012 airfoil is numerically simulated using Unsteady-Reynolds-Averaged Navier–Stokes (URANS) and multiple detached eddy simulation (DES) solvers: the Delayed-DES (DDES) and the Improved-DDES (IDDES). Two- and three-dimensional simulations are performed for each solver, and the results are compared against experimental measurements in the literature. The results showed that three-dimensional simulations surpass two-dimensional ones in capturing the stages of dynamic stall and predicting the lift coefficient values, with a distinguished performance of the DES solvers over the URANS ones. For instance, the IDDES simulations, as an inherently three-dimensional solver, predicted the necessary cascaded amalgamation process of vortices to form the adequate strength of the dynamic stall vortex. This vortex size and timing provided accurate and sufficient suction that resulted in identical matching of the numerical and experimental lift coefficients at the peak value. Hence, the hypothesis that dynamic stall has a three-dimensional nature is supported by the superiority of the three-dimensional simulation in all aspects. In conclusion, it is found that dynamic stall is intrinsically a three-dimensional phenomenon.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0170251</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5541-2788</orcidid><orcidid>https://orcid.org/0000-0002-9242-2045</orcidid><orcidid>https://orcid.org/0000-0003-3838-5607</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2023-10, Vol.35 (10) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0170251 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Aerodynamic coefficients Aeronautics Detached eddy simulation Fluid dynamics Fluid flow Physics Reynolds averaged Navier-Stokes method Simulation Solvers Suction |
title | On computational simulations of dynamic stall and its three-dimensional nature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20computational%20simulations%20of%20dynamic%20stall%20and%20its%20three-dimensional%20nature&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Khalifa,%20Nabil%20M.&rft.date=2023-10&rft.volume=35&rft.issue=10&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0170251&rft_dat=%3Cproquest_cross%3E2879414147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879414147&rft_id=info:pmid/&rfr_iscdi=true |