Molecular dynamics simulation of ultrasound cavitation occurring in copper–water nanofluid

It is necessary to reveal the impact of nanoparticles on ultrasonic cavitation phenomena in nanofluids, which is conducive to the heterogeneous nucleation applications of ultrasonic cavitation. In this work, the ultrasonic cavitation processes in pure water and nanofluids were simulated by molecular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2023-10, Vol.35 (10)
Hauptverfasser: Zhang, Dongwei, Duan, Cheng'ao, Guan, Jian, Chen, Songxuan, Ha, Xiaoliang, Liu, Tianlu, Liu, Deping, Tang, Songzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physics of fluids (1994)
container_volume 35
creator Zhang, Dongwei
Duan, Cheng'ao
Guan, Jian
Chen, Songxuan
Ha, Xiaoliang
Liu, Tianlu
Liu, Deping
Tang, Songzhen
description It is necessary to reveal the impact of nanoparticles on ultrasonic cavitation phenomena in nanofluids, which is conducive to the heterogeneous nucleation applications of ultrasonic cavitation. In this work, the ultrasonic cavitation processes in pure water and nanofluids were simulated by molecular dynamics. Then, the effect of nanoparticles on ultrasonic cavitation was investigated by adding alternate positive and negative pressure waves. After that, the formation of critical bubbles in cavitation and the collapse of nanobubbles by shock waves were studied by using Voronoi mosaic method and rigid body model, respectively. Finally, the regenerated nanobubbles were analyzed after the collapse of nanobubbles. The results show that the nanoparticles could promote the formation of nanobubbles, and consequently, the nano-jets and nanoparticles movement occur during the collapse of nano-bubbles. Additionally, more tiny cavities generated after the collapsing of nanobubbles and the number of nanobubbles during second cycle will be larger than that of the first cycle. As a result, some of these cavities promote the generation of multiple ultrasonic cavitation bubbles in the subsequent ultrasonic cycle. This leads to the chain reaction effect of ultrasonic cavitation phenomenon occurring in nanofluids.
doi_str_mv 10.1063/5.0167210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0167210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878513257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-f5065f1ca6cafeddcb9ddddd86d93047b3db4ce55dfbe0330ca8d02abf0a9ede3</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxoMouK4efIOAJ4Wuk2aTtkdZ_AcrXvQmlDR_JEub1KRR9uY7-IY-iV22Z-fyDTM_5mM-hM4JLAhwes0WQHiREzhAMwJllRWc88NdX0DGOSXH6CTGDQDQKucz9PbkWy1TKwJWWyc6KyOOthsHg_UOe4NTOwQRfXIKS_Fph2khZQrBundsHZa-73X4_f75EoMO2AnnTZusOkVHRrRRn006R693ty-rh2z9fP-4ullnkubFkBkGnBkiBZfCaKVkU6ldlVxVFJZFQ1WzlJoxZRoNlIIUpYJcNAZEpZWmc3Sxv9sH_5F0HOqNT8GNlnVeFiUjNGfFSF3uKRl8jEGbug-2E2FbE6h34dWsnsIb2as9G-X08T_wH0uzczM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878513257</pqid></control><display><type>article</type><title>Molecular dynamics simulation of ultrasound cavitation occurring in copper–water nanofluid</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, Dongwei ; Duan, Cheng'ao ; Guan, Jian ; Chen, Songxuan ; Ha, Xiaoliang ; Liu, Tianlu ; Liu, Deping ; Tang, Songzhen</creator><creatorcontrib>Zhang, Dongwei ; Duan, Cheng'ao ; Guan, Jian ; Chen, Songxuan ; Ha, Xiaoliang ; Liu, Tianlu ; Liu, Deping ; Tang, Songzhen</creatorcontrib><description>It is necessary to reveal the impact of nanoparticles on ultrasonic cavitation phenomena in nanofluids, which is conducive to the heterogeneous nucleation applications of ultrasonic cavitation. In this work, the ultrasonic cavitation processes in pure water and nanofluids were simulated by molecular dynamics. Then, the effect of nanoparticles on ultrasonic cavitation was investigated by adding alternate positive and negative pressure waves. After that, the formation of critical bubbles in cavitation and the collapse of nanobubbles by shock waves were studied by using Voronoi mosaic method and rigid body model, respectively. Finally, the regenerated nanobubbles were analyzed after the collapse of nanobubbles. The results show that the nanoparticles could promote the formation of nanobubbles, and consequently, the nano-jets and nanoparticles movement occur during the collapse of nano-bubbles. Additionally, more tiny cavities generated after the collapsing of nanobubbles and the number of nanobubbles during second cycle will be larger than that of the first cycle. As a result, some of these cavities promote the generation of multiple ultrasonic cavitation bubbles in the subsequent ultrasonic cycle. This leads to the chain reaction effect of ultrasonic cavitation phenomenon occurring in nanofluids.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0167210</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bubbles ; Cavitation ; Elastic waves ; Fluid dynamics ; Molecular dynamics ; Nanofluids ; Nanoparticles ; Nucleation ; Physics ; Rigid structures ; Shock waves</subject><ispartof>Physics of fluids (1994), 2023-10, Vol.35 (10)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-f5065f1ca6cafeddcb9ddddd86d93047b3db4ce55dfbe0330ca8d02abf0a9ede3</citedby><cites>FETCH-LOGICAL-c327t-f5065f1ca6cafeddcb9ddddd86d93047b3db4ce55dfbe0330ca8d02abf0a9ede3</cites><orcidid>0000-0001-9794-0602 ; 0009-0009-8165-7998 ; 0009-0005-2654-158X ; 0009-0000-6832-9599 ; 0009-0005-1275-2693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Dongwei</creatorcontrib><creatorcontrib>Duan, Cheng'ao</creatorcontrib><creatorcontrib>Guan, Jian</creatorcontrib><creatorcontrib>Chen, Songxuan</creatorcontrib><creatorcontrib>Ha, Xiaoliang</creatorcontrib><creatorcontrib>Liu, Tianlu</creatorcontrib><creatorcontrib>Liu, Deping</creatorcontrib><creatorcontrib>Tang, Songzhen</creatorcontrib><title>Molecular dynamics simulation of ultrasound cavitation occurring in copper–water nanofluid</title><title>Physics of fluids (1994)</title><description>It is necessary to reveal the impact of nanoparticles on ultrasonic cavitation phenomena in nanofluids, which is conducive to the heterogeneous nucleation applications of ultrasonic cavitation. In this work, the ultrasonic cavitation processes in pure water and nanofluids were simulated by molecular dynamics. Then, the effect of nanoparticles on ultrasonic cavitation was investigated by adding alternate positive and negative pressure waves. After that, the formation of critical bubbles in cavitation and the collapse of nanobubbles by shock waves were studied by using Voronoi mosaic method and rigid body model, respectively. Finally, the regenerated nanobubbles were analyzed after the collapse of nanobubbles. The results show that the nanoparticles could promote the formation of nanobubbles, and consequently, the nano-jets and nanoparticles movement occur during the collapse of nano-bubbles. Additionally, more tiny cavities generated after the collapsing of nanobubbles and the number of nanobubbles during second cycle will be larger than that of the first cycle. As a result, some of these cavities promote the generation of multiple ultrasonic cavitation bubbles in the subsequent ultrasonic cycle. This leads to the chain reaction effect of ultrasonic cavitation phenomenon occurring in nanofluids.</description><subject>Bubbles</subject><subject>Cavitation</subject><subject>Elastic waves</subject><subject>Fluid dynamics</subject><subject>Molecular dynamics</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Rigid structures</subject><subject>Shock waves</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KxDAQxoMouK4efIOAJ4Wuk2aTtkdZ_AcrXvQmlDR_JEub1KRR9uY7-IY-iV22Z-fyDTM_5mM-hM4JLAhwes0WQHiREzhAMwJllRWc88NdX0DGOSXH6CTGDQDQKucz9PbkWy1TKwJWWyc6KyOOthsHg_UOe4NTOwQRfXIKS_Fph2khZQrBundsHZa-73X4_f75EoMO2AnnTZusOkVHRrRRn006R693ty-rh2z9fP-4ullnkubFkBkGnBkiBZfCaKVkU6ldlVxVFJZFQ1WzlJoxZRoNlIIUpYJcNAZEpZWmc3Sxv9sH_5F0HOqNT8GNlnVeFiUjNGfFSF3uKRl8jEGbug-2E2FbE6h34dWsnsIb2as9G-X08T_wH0uzczM</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Zhang, Dongwei</creator><creator>Duan, Cheng'ao</creator><creator>Guan, Jian</creator><creator>Chen, Songxuan</creator><creator>Ha, Xiaoliang</creator><creator>Liu, Tianlu</creator><creator>Liu, Deping</creator><creator>Tang, Songzhen</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9794-0602</orcidid><orcidid>https://orcid.org/0009-0009-8165-7998</orcidid><orcidid>https://orcid.org/0009-0005-2654-158X</orcidid><orcidid>https://orcid.org/0009-0000-6832-9599</orcidid><orcidid>https://orcid.org/0009-0005-1275-2693</orcidid></search><sort><creationdate>202310</creationdate><title>Molecular dynamics simulation of ultrasound cavitation occurring in copper–water nanofluid</title><author>Zhang, Dongwei ; Duan, Cheng'ao ; Guan, Jian ; Chen, Songxuan ; Ha, Xiaoliang ; Liu, Tianlu ; Liu, Deping ; Tang, Songzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-f5065f1ca6cafeddcb9ddddd86d93047b3db4ce55dfbe0330ca8d02abf0a9ede3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bubbles</topic><topic>Cavitation</topic><topic>Elastic waves</topic><topic>Fluid dynamics</topic><topic>Molecular dynamics</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Rigid structures</topic><topic>Shock waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dongwei</creatorcontrib><creatorcontrib>Duan, Cheng'ao</creatorcontrib><creatorcontrib>Guan, Jian</creatorcontrib><creatorcontrib>Chen, Songxuan</creatorcontrib><creatorcontrib>Ha, Xiaoliang</creatorcontrib><creatorcontrib>Liu, Tianlu</creatorcontrib><creatorcontrib>Liu, Deping</creatorcontrib><creatorcontrib>Tang, Songzhen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dongwei</au><au>Duan, Cheng'ao</au><au>Guan, Jian</au><au>Chen, Songxuan</au><au>Ha, Xiaoliang</au><au>Liu, Tianlu</au><au>Liu, Deping</au><au>Tang, Songzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulation of ultrasound cavitation occurring in copper–water nanofluid</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-10</date><risdate>2023</risdate><volume>35</volume><issue>10</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>It is necessary to reveal the impact of nanoparticles on ultrasonic cavitation phenomena in nanofluids, which is conducive to the heterogeneous nucleation applications of ultrasonic cavitation. In this work, the ultrasonic cavitation processes in pure water and nanofluids were simulated by molecular dynamics. Then, the effect of nanoparticles on ultrasonic cavitation was investigated by adding alternate positive and negative pressure waves. After that, the formation of critical bubbles in cavitation and the collapse of nanobubbles by shock waves were studied by using Voronoi mosaic method and rigid body model, respectively. Finally, the regenerated nanobubbles were analyzed after the collapse of nanobubbles. The results show that the nanoparticles could promote the formation of nanobubbles, and consequently, the nano-jets and nanoparticles movement occur during the collapse of nano-bubbles. Additionally, more tiny cavities generated after the collapsing of nanobubbles and the number of nanobubbles during second cycle will be larger than that of the first cycle. As a result, some of these cavities promote the generation of multiple ultrasonic cavitation bubbles in the subsequent ultrasonic cycle. This leads to the chain reaction effect of ultrasonic cavitation phenomenon occurring in nanofluids.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0167210</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9794-0602</orcidid><orcidid>https://orcid.org/0009-0009-8165-7998</orcidid><orcidid>https://orcid.org/0009-0005-2654-158X</orcidid><orcidid>https://orcid.org/0009-0000-6832-9599</orcidid><orcidid>https://orcid.org/0009-0005-1275-2693</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2023-10, Vol.35 (10)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0167210
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bubbles
Cavitation
Elastic waves
Fluid dynamics
Molecular dynamics
Nanofluids
Nanoparticles
Nucleation
Physics
Rigid structures
Shock waves
title Molecular dynamics simulation of ultrasound cavitation occurring in copper–water nanofluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulation%20of%20ultrasound%20cavitation%20occurring%20in%20copper%E2%80%93water%20nanofluid&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Zhang,%20Dongwei&rft.date=2023-10&rft.volume=35&rft.issue=10&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0167210&rft_dat=%3Cproquest_cross%3E2878513257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878513257&rft_id=info:pmid/&rfr_iscdi=true