Beyond the Maxwell Garnett approximation for interacting plasmonic nanoparticles: An analytical and numerical study
We revisit the issue of building a precise mixing formula for the effective permittivity of interacting assemblies of plasmonic nanoparticles. More precisely, we reconsider the analytical expressions rendered by the Maxwell Garnett and Torquato et al. approximation formulas and compare them to each...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2023-09, Vol.134 (9) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 134 |
creator | Maurice, M. S. Barros, N. Kachkachi, H. |
description | We revisit the issue of building a precise mixing formula for the effective permittivity of interacting assemblies of plasmonic nanoparticles. More precisely, we reconsider the analytical expressions rendered by the Maxwell Garnett and Torquato et al. approximation formulas and compare them to each other and to a numerical approach based on the boundary element method applied to interacting assemblies of metallic (gold or silver) nanoparticles. For efficient numerical simulations of interacting assemblies of relatively large sizes, we set up an algorithm with adaptive surface meshing that depends on the particle’s position within the assembly. Next, we derive expressions for the resonance frequency of the assembly from the analytical formulas, which are valid for gold and silver particle assemblies embedded in matrices with large optical indices. We then compare the analytical results with our numerical findings. We find that the Maxwell Garnett approximation formula underestimates the resonance wavelength and that its validity range in terms of inclusion fraction strongly depends on the nature of the metal and the embedding matrix. In the case of silver particles embedded in high-permittivity matrices, the Maxwell Garnett formula should only be used for low particle concentrations. Torquato’s formula, on the other hand, which accounts for multipolar interactions and the assembly spatial arrangement, renders a better agreement with the numerical simulations. |
doi_str_mv | 10.1063/5.0161031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0161031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860987357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-861aeb441244f6038bd59d048ded2083299e6b2056ebad44ddb8c97b959b9f493</originalsourceid><addsrcrecordid>eNp9kMFLwzAYxYMoOKcH_4OAJ4XOL23SJt7m0E2YeNFzSJvUdXRJTTLd_nu7TfTm6fve48eD9xC6JDAikGe3bAQkJ5CRIzQgwEVSMAbHaACQkoSLQpyisxCWAITwTAxQuDdbZzWOC4Of1ebLtC2eKm9NjFh1nXebZqVi4yyunceNjcarKjb2HXetCitnmwpbZV2nfGyq1oQ7PLZYWdVue63a_tXYrlfG71WIa709Rye1aoO5-LlD9Pb48DqZJfOX6dNkPE-qLM1jwnOiTEkpSSmtc8h4qZnQQLk2OgWepUKYvEyB5aZUmlKtS16JohRMlKKmIhui60PuQrWy830Rv5VONXI2nsudB7RghJD0k_Ts1YHtK3-sTYhy6da-rxFkynMQvMhY8ZdYeReCN_VvLAG5218y-bN_z94c2FA1cT_hP_A3aqKFbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860987357</pqid></control><display><type>article</type><title>Beyond the Maxwell Garnett approximation for interacting plasmonic nanoparticles: An analytical and numerical study</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Maurice, M. S. ; Barros, N. ; Kachkachi, H.</creator><creatorcontrib>Maurice, M. S. ; Barros, N. ; Kachkachi, H.</creatorcontrib><description>We revisit the issue of building a precise mixing formula for the effective permittivity of interacting assemblies of plasmonic nanoparticles. More precisely, we reconsider the analytical expressions rendered by the Maxwell Garnett and Torquato et al. approximation formulas and compare them to each other and to a numerical approach based on the boundary element method applied to interacting assemblies of metallic (gold or silver) nanoparticles. For efficient numerical simulations of interacting assemblies of relatively large sizes, we set up an algorithm with adaptive surface meshing that depends on the particle’s position within the assembly. Next, we derive expressions for the resonance frequency of the assembly from the analytical formulas, which are valid for gold and silver particle assemblies embedded in matrices with large optical indices. We then compare the analytical results with our numerical findings. We find that the Maxwell Garnett approximation formula underestimates the resonance wavelength and that its validity range in terms of inclusion fraction strongly depends on the nature of the metal and the embedding matrix. In the case of silver particles embedded in high-permittivity matrices, the Maxwell Garnett formula should only be used for low particle concentrations. Torquato’s formula, on the other hand, which accounts for multipolar interactions and the assembly spatial arrangement, renders a better agreement with the numerical simulations.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0161031</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adaptive algorithms ; Applied physics ; Approximation ; Assemblies ; Assembly ; Boundary element method ; Computer simulation ; Embedding ; Engineering Sciences ; Gold ; Mathematical analysis ; Nanoparticles ; Permittivity ; Plasmonics ; Resonance ; Silver</subject><ispartof>Journal of applied physics, 2023-09, Vol.134 (9)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-861aeb441244f6038bd59d048ded2083299e6b2056ebad44ddb8c97b959b9f493</citedby><cites>FETCH-LOGICAL-c326t-861aeb441244f6038bd59d048ded2083299e6b2056ebad44ddb8c97b959b9f493</cites><orcidid>0000-0002-6954-8117 ; 0000-0002-0126-1136 ; 0000-0003-1048-1939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0161031$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://cnrs.hal.science/hal-04751112$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maurice, M. S.</creatorcontrib><creatorcontrib>Barros, N.</creatorcontrib><creatorcontrib>Kachkachi, H.</creatorcontrib><title>Beyond the Maxwell Garnett approximation for interacting plasmonic nanoparticles: An analytical and numerical study</title><title>Journal of applied physics</title><description>We revisit the issue of building a precise mixing formula for the effective permittivity of interacting assemblies of plasmonic nanoparticles. More precisely, we reconsider the analytical expressions rendered by the Maxwell Garnett and Torquato et al. approximation formulas and compare them to each other and to a numerical approach based on the boundary element method applied to interacting assemblies of metallic (gold or silver) nanoparticles. For efficient numerical simulations of interacting assemblies of relatively large sizes, we set up an algorithm with adaptive surface meshing that depends on the particle’s position within the assembly. Next, we derive expressions for the resonance frequency of the assembly from the analytical formulas, which are valid for gold and silver particle assemblies embedded in matrices with large optical indices. We then compare the analytical results with our numerical findings. We find that the Maxwell Garnett approximation formula underestimates the resonance wavelength and that its validity range in terms of inclusion fraction strongly depends on the nature of the metal and the embedding matrix. In the case of silver particles embedded in high-permittivity matrices, the Maxwell Garnett formula should only be used for low particle concentrations. Torquato’s formula, on the other hand, which accounts for multipolar interactions and the assembly spatial arrangement, renders a better agreement with the numerical simulations.</description><subject>Adaptive algorithms</subject><subject>Applied physics</subject><subject>Approximation</subject><subject>Assemblies</subject><subject>Assembly</subject><subject>Boundary element method</subject><subject>Computer simulation</subject><subject>Embedding</subject><subject>Engineering Sciences</subject><subject>Gold</subject><subject>Mathematical analysis</subject><subject>Nanoparticles</subject><subject>Permittivity</subject><subject>Plasmonics</subject><subject>Resonance</subject><subject>Silver</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAYxYMoOKcH_4OAJ4XOL23SJt7m0E2YeNFzSJvUdXRJTTLd_nu7TfTm6fve48eD9xC6JDAikGe3bAQkJ5CRIzQgwEVSMAbHaACQkoSLQpyisxCWAITwTAxQuDdbZzWOC4Of1ebLtC2eKm9NjFh1nXebZqVi4yyunceNjcarKjb2HXetCitnmwpbZV2nfGyq1oQ7PLZYWdVue63a_tXYrlfG71WIa709Rye1aoO5-LlD9Pb48DqZJfOX6dNkPE-qLM1jwnOiTEkpSSmtc8h4qZnQQLk2OgWepUKYvEyB5aZUmlKtS16JohRMlKKmIhui60PuQrWy830Rv5VONXI2nsudB7RghJD0k_Ts1YHtK3-sTYhy6da-rxFkynMQvMhY8ZdYeReCN_VvLAG5218y-bN_z94c2FA1cT_hP_A3aqKFbw</recordid><startdate>20230907</startdate><enddate>20230907</enddate><creator>Maurice, M. S.</creator><creator>Barros, N.</creator><creator>Kachkachi, H.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6954-8117</orcidid><orcidid>https://orcid.org/0000-0002-0126-1136</orcidid><orcidid>https://orcid.org/0000-0003-1048-1939</orcidid></search><sort><creationdate>20230907</creationdate><title>Beyond the Maxwell Garnett approximation for interacting plasmonic nanoparticles: An analytical and numerical study</title><author>Maurice, M. S. ; Barros, N. ; Kachkachi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-861aeb441244f6038bd59d048ded2083299e6b2056ebad44ddb8c97b959b9f493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Applied physics</topic><topic>Approximation</topic><topic>Assemblies</topic><topic>Assembly</topic><topic>Boundary element method</topic><topic>Computer simulation</topic><topic>Embedding</topic><topic>Engineering Sciences</topic><topic>Gold</topic><topic>Mathematical analysis</topic><topic>Nanoparticles</topic><topic>Permittivity</topic><topic>Plasmonics</topic><topic>Resonance</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maurice, M. S.</creatorcontrib><creatorcontrib>Barros, N.</creatorcontrib><creatorcontrib>Kachkachi, H.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maurice, M. S.</au><au>Barros, N.</au><au>Kachkachi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond the Maxwell Garnett approximation for interacting plasmonic nanoparticles: An analytical and numerical study</atitle><jtitle>Journal of applied physics</jtitle><date>2023-09-07</date><risdate>2023</risdate><volume>134</volume><issue>9</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We revisit the issue of building a precise mixing formula for the effective permittivity of interacting assemblies of plasmonic nanoparticles. More precisely, we reconsider the analytical expressions rendered by the Maxwell Garnett and Torquato et al. approximation formulas and compare them to each other and to a numerical approach based on the boundary element method applied to interacting assemblies of metallic (gold or silver) nanoparticles. For efficient numerical simulations of interacting assemblies of relatively large sizes, we set up an algorithm with adaptive surface meshing that depends on the particle’s position within the assembly. Next, we derive expressions for the resonance frequency of the assembly from the analytical formulas, which are valid for gold and silver particle assemblies embedded in matrices with large optical indices. We then compare the analytical results with our numerical findings. We find that the Maxwell Garnett approximation formula underestimates the resonance wavelength and that its validity range in terms of inclusion fraction strongly depends on the nature of the metal and the embedding matrix. In the case of silver particles embedded in high-permittivity matrices, the Maxwell Garnett formula should only be used for low particle concentrations. Torquato’s formula, on the other hand, which accounts for multipolar interactions and the assembly spatial arrangement, renders a better agreement with the numerical simulations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0161031</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6954-8117</orcidid><orcidid>https://orcid.org/0000-0002-0126-1136</orcidid><orcidid>https://orcid.org/0000-0003-1048-1939</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-09, Vol.134 (9) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0161031 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Adaptive algorithms Applied physics Approximation Assemblies Assembly Boundary element method Computer simulation Embedding Engineering Sciences Gold Mathematical analysis Nanoparticles Permittivity Plasmonics Resonance Silver |
title | Beyond the Maxwell Garnett approximation for interacting plasmonic nanoparticles: An analytical and numerical study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20the%20Maxwell%20Garnett%20approximation%20for%20interacting%20plasmonic%20nanoparticles:%20An%20analytical%20and%20numerical%20study&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Maurice,%20M.%20S.&rft.date=2023-09-07&rft.volume=134&rft.issue=9&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0161031&rft_dat=%3Cproquest_cross%3E2860987357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2860987357&rft_id=info:pmid/&rfr_iscdi=true |