Resonance theory and quantum dynamics simulations of vibrational polariton chemistry
We present numerically exact quantum dynamics simulations using the hierarchical equation of motion approach to investigate the resonance enhancement of chemical reactions due to the vibrational strong coupling (VSC) in polariton chemistry. The results reveal that the cavity mode acts like a “rate-p...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-08, Vol.159 (8) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 159 |
creator | Ying, Wenxiang Huo, Pengfei |
description | We present numerically exact quantum dynamics simulations using the hierarchical equation of motion approach to investigate the resonance enhancement of chemical reactions due to the vibrational strong coupling (VSC) in polariton chemistry. The results reveal that the cavity mode acts like a “rate-promoting vibrational mode” that enhances the ground state chemical reaction rate constant when the cavity mode frequency matches the vibrational transition frequency. The exact simulation predicts that the VSC-modified rate constant will change quadratically as the light–matter coupling strength increases. When changing the cavity lifetime from the lossy limit to the lossless limit, the numerically exact results predict that there will be a turnover of the rate constant. Based on the numerical observations, we present an analytic rate theory to explain the observed sharp resonance peak of the rate profile when tuning the cavity frequency to match the quantum transition frequency of the vibrational ground state to excited states. This rate theory further explains the origin of the broadening of the rate profile. The analytic rate theory agrees with the numerical results under the golden rule limit and the short cavity lifetime limit. To the best of our knowledge, this is the first analytic theory that is able to explain the sharp resonance behavior of the VSC-modified rate profile when coupling an adiabatic ground state chemical reaction to the cavity. We envision that both the numerical analysis and the analytic theory will offer invaluable theoretical insights into the fundamental mechanism of the VSC-induced rate constant modifications in polariton chemistry. |
doi_str_mv | 10.1063/5.0159791 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0159791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854649052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-991d3da2e2d513f461cce64cb50c0cd87f2675778e31201c6d0b045f5edfcd5c3</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pwf8g4EWFzpe0SZujiL9gIMg8lyxJWUabbEkq9L-3rjt58PR48OH7Hl-ErgksCPD8gS2AMFEKcoJmBCqRlVzAKZoBUJIJDvwcXcS4BQBS0mKGVp8meiedMjhtjA8Dlk7jfS9d6jusByc7qyKOtutbmax3EfsGf9t1OGyyxTvfymCTd1htTGdjCsMlOmtkG83Vcc7R18vz6uktW368vj89LjOVU5YyIYjOtaSGakbypuBEKcMLtWagQOmqbCgvWVlWJicUiOIa1lCwhhndKM1UPke3U-4u-H1vYqrH-8q0rXTG97GmFSsEr_KyGunNH7r1fRj_nxQvBDA6qrtJqeBjDKapd8F2Mgw1gfq335rVx35Hez_ZqGw6lPEP_gHiYHsZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854649052</pqid></control><display><type>article</type><title>Resonance theory and quantum dynamics simulations of vibrational polariton chemistry</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ying, Wenxiang ; Huo, Pengfei</creator><creatorcontrib>Ying, Wenxiang ; Huo, Pengfei</creatorcontrib><description>We present numerically exact quantum dynamics simulations using the hierarchical equation of motion approach to investigate the resonance enhancement of chemical reactions due to the vibrational strong coupling (VSC) in polariton chemistry. The results reveal that the cavity mode acts like a “rate-promoting vibrational mode” that enhances the ground state chemical reaction rate constant when the cavity mode frequency matches the vibrational transition frequency. The exact simulation predicts that the VSC-modified rate constant will change quadratically as the light–matter coupling strength increases. When changing the cavity lifetime from the lossy limit to the lossless limit, the numerically exact results predict that there will be a turnover of the rate constant. Based on the numerical observations, we present an analytic rate theory to explain the observed sharp resonance peak of the rate profile when tuning the cavity frequency to match the quantum transition frequency of the vibrational ground state to excited states. This rate theory further explains the origin of the broadening of the rate profile. The analytic rate theory agrees with the numerical results under the golden rule limit and the short cavity lifetime limit. To the best of our knowledge, this is the first analytic theory that is able to explain the sharp resonance behavior of the VSC-modified rate profile when coupling an adiabatic ground state chemical reaction to the cavity. We envision that both the numerical analysis and the analytic theory will offer invaluable theoretical insights into the fundamental mechanism of the VSC-induced rate constant modifications in polariton chemistry.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0159791</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chemical reactions ; Chemistry ; Coupling ; Equations of motion ; Ground state ; Mathematical analysis ; Numerical analysis ; Oxidation ; Polaritons ; Quantum theory ; Rate theory ; Resonance ; Simulation ; Vibration mode</subject><ispartof>The Journal of chemical physics, 2023-08, Vol.159 (8)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-991d3da2e2d513f461cce64cb50c0cd87f2675778e31201c6d0b045f5edfcd5c3</citedby><cites>FETCH-LOGICAL-c325t-991d3da2e2d513f461cce64cb50c0cd87f2675778e31201c6d0b045f5edfcd5c3</cites><orcidid>0000-0003-3188-020X ; 0000-0002-8639-9299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0159791$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Ying, Wenxiang</creatorcontrib><creatorcontrib>Huo, Pengfei</creatorcontrib><title>Resonance theory and quantum dynamics simulations of vibrational polariton chemistry</title><title>The Journal of chemical physics</title><description>We present numerically exact quantum dynamics simulations using the hierarchical equation of motion approach to investigate the resonance enhancement of chemical reactions due to the vibrational strong coupling (VSC) in polariton chemistry. The results reveal that the cavity mode acts like a “rate-promoting vibrational mode” that enhances the ground state chemical reaction rate constant when the cavity mode frequency matches the vibrational transition frequency. The exact simulation predicts that the VSC-modified rate constant will change quadratically as the light–matter coupling strength increases. When changing the cavity lifetime from the lossy limit to the lossless limit, the numerically exact results predict that there will be a turnover of the rate constant. Based on the numerical observations, we present an analytic rate theory to explain the observed sharp resonance peak of the rate profile when tuning the cavity frequency to match the quantum transition frequency of the vibrational ground state to excited states. This rate theory further explains the origin of the broadening of the rate profile. The analytic rate theory agrees with the numerical results under the golden rule limit and the short cavity lifetime limit. To the best of our knowledge, this is the first analytic theory that is able to explain the sharp resonance behavior of the VSC-modified rate profile when coupling an adiabatic ground state chemical reaction to the cavity. We envision that both the numerical analysis and the analytic theory will offer invaluable theoretical insights into the fundamental mechanism of the VSC-induced rate constant modifications in polariton chemistry.</description><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Coupling</subject><subject>Equations of motion</subject><subject>Ground state</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>Oxidation</subject><subject>Polaritons</subject><subject>Quantum theory</subject><subject>Rate theory</subject><subject>Resonance</subject><subject>Simulation</subject><subject>Vibration mode</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCs7pwf8g4EWFzpe0SZujiL9gIMg8lyxJWUabbEkq9L-3rjt58PR48OH7Hl-ErgksCPD8gS2AMFEKcoJmBCqRlVzAKZoBUJIJDvwcXcS4BQBS0mKGVp8meiedMjhtjA8Dlk7jfS9d6jusByc7qyKOtutbmax3EfsGf9t1OGyyxTvfymCTd1htTGdjCsMlOmtkG83Vcc7R18vz6uktW368vj89LjOVU5YyIYjOtaSGakbypuBEKcMLtWagQOmqbCgvWVlWJicUiOIa1lCwhhndKM1UPke3U-4u-H1vYqrH-8q0rXTG97GmFSsEr_KyGunNH7r1fRj_nxQvBDA6qrtJqeBjDKapd8F2Mgw1gfq335rVx35Hez_ZqGw6lPEP_gHiYHsZ</recordid><startdate>20230828</startdate><enddate>20230828</enddate><creator>Ying, Wenxiang</creator><creator>Huo, Pengfei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3188-020X</orcidid><orcidid>https://orcid.org/0000-0002-8639-9299</orcidid></search><sort><creationdate>20230828</creationdate><title>Resonance theory and quantum dynamics simulations of vibrational polariton chemistry</title><author>Ying, Wenxiang ; Huo, Pengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-991d3da2e2d513f461cce64cb50c0cd87f2675778e31201c6d0b045f5edfcd5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Coupling</topic><topic>Equations of motion</topic><topic>Ground state</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>Oxidation</topic><topic>Polaritons</topic><topic>Quantum theory</topic><topic>Rate theory</topic><topic>Resonance</topic><topic>Simulation</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ying, Wenxiang</creatorcontrib><creatorcontrib>Huo, Pengfei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ying, Wenxiang</au><au>Huo, Pengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonance theory and quantum dynamics simulations of vibrational polariton chemistry</atitle><jtitle>The Journal of chemical physics</jtitle><date>2023-08-28</date><risdate>2023</risdate><volume>159</volume><issue>8</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We present numerically exact quantum dynamics simulations using the hierarchical equation of motion approach to investigate the resonance enhancement of chemical reactions due to the vibrational strong coupling (VSC) in polariton chemistry. The results reveal that the cavity mode acts like a “rate-promoting vibrational mode” that enhances the ground state chemical reaction rate constant when the cavity mode frequency matches the vibrational transition frequency. The exact simulation predicts that the VSC-modified rate constant will change quadratically as the light–matter coupling strength increases. When changing the cavity lifetime from the lossy limit to the lossless limit, the numerically exact results predict that there will be a turnover of the rate constant. Based on the numerical observations, we present an analytic rate theory to explain the observed sharp resonance peak of the rate profile when tuning the cavity frequency to match the quantum transition frequency of the vibrational ground state to excited states. This rate theory further explains the origin of the broadening of the rate profile. The analytic rate theory agrees with the numerical results under the golden rule limit and the short cavity lifetime limit. To the best of our knowledge, this is the first analytic theory that is able to explain the sharp resonance behavior of the VSC-modified rate profile when coupling an adiabatic ground state chemical reaction to the cavity. We envision that both the numerical analysis and the analytic theory will offer invaluable theoretical insights into the fundamental mechanism of the VSC-induced rate constant modifications in polariton chemistry.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0159791</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-3188-020X</orcidid><orcidid>https://orcid.org/0000-0002-8639-9299</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-08, Vol.159 (8) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0159791 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Chemical reactions Chemistry Coupling Equations of motion Ground state Mathematical analysis Numerical analysis Oxidation Polaritons Quantum theory Rate theory Resonance Simulation Vibration mode |
title | Resonance theory and quantum dynamics simulations of vibrational polariton chemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonance%20theory%20and%20quantum%20dynamics%20simulations%20of%20vibrational%20polariton%20chemistry&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ying,%20Wenxiang&rft.date=2023-08-28&rft.volume=159&rft.issue=8&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0159791&rft_dat=%3Cproquest_cross%3E2854649052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854649052&rft_id=info:pmid/&rfr_iscdi=true |