Resonance theory and quantum dynamics simulations of vibrational polariton chemistry

We present numerically exact quantum dynamics simulations using the hierarchical equation of motion approach to investigate the resonance enhancement of chemical reactions due to the vibrational strong coupling (VSC) in polariton chemistry. The results reveal that the cavity mode acts like a “rate-p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-08, Vol.159 (8)
Hauptverfasser: Ying, Wenxiang, Huo, Pengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title The Journal of chemical physics
container_volume 159
creator Ying, Wenxiang
Huo, Pengfei
description We present numerically exact quantum dynamics simulations using the hierarchical equation of motion approach to investigate the resonance enhancement of chemical reactions due to the vibrational strong coupling (VSC) in polariton chemistry. The results reveal that the cavity mode acts like a “rate-promoting vibrational mode” that enhances the ground state chemical reaction rate constant when the cavity mode frequency matches the vibrational transition frequency. The exact simulation predicts that the VSC-modified rate constant will change quadratically as the light–matter coupling strength increases. When changing the cavity lifetime from the lossy limit to the lossless limit, the numerically exact results predict that there will be a turnover of the rate constant. Based on the numerical observations, we present an analytic rate theory to explain the observed sharp resonance peak of the rate profile when tuning the cavity frequency to match the quantum transition frequency of the vibrational ground state to excited states. This rate theory further explains the origin of the broadening of the rate profile. The analytic rate theory agrees with the numerical results under the golden rule limit and the short cavity lifetime limit. To the best of our knowledge, this is the first analytic theory that is able to explain the sharp resonance behavior of the VSC-modified rate profile when coupling an adiabatic ground state chemical reaction to the cavity. We envision that both the numerical analysis and the analytic theory will offer invaluable theoretical insights into the fundamental mechanism of the VSC-induced rate constant modifications in polariton chemistry.
doi_str_mv 10.1063/5.0159791
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0159791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854649052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-991d3da2e2d513f461cce64cb50c0cd87f2675778e31201c6d0b045f5edfcd5c3</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pwf8g4EWFzpe0SZujiL9gIMg8lyxJWUabbEkq9L-3rjt58PR48OH7Hl-ErgksCPD8gS2AMFEKcoJmBCqRlVzAKZoBUJIJDvwcXcS4BQBS0mKGVp8meiedMjhtjA8Dlk7jfS9d6jusByc7qyKOtutbmax3EfsGf9t1OGyyxTvfymCTd1htTGdjCsMlOmtkG83Vcc7R18vz6uktW368vj89LjOVU5YyIYjOtaSGakbypuBEKcMLtWagQOmqbCgvWVlWJicUiOIa1lCwhhndKM1UPke3U-4u-H1vYqrH-8q0rXTG97GmFSsEr_KyGunNH7r1fRj_nxQvBDA6qrtJqeBjDKapd8F2Mgw1gfq335rVx35Hez_ZqGw6lPEP_gHiYHsZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854649052</pqid></control><display><type>article</type><title>Resonance theory and quantum dynamics simulations of vibrational polariton chemistry</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ying, Wenxiang ; Huo, Pengfei</creator><creatorcontrib>Ying, Wenxiang ; Huo, Pengfei</creatorcontrib><description>We present numerically exact quantum dynamics simulations using the hierarchical equation of motion approach to investigate the resonance enhancement of chemical reactions due to the vibrational strong coupling (VSC) in polariton chemistry. The results reveal that the cavity mode acts like a “rate-promoting vibrational mode” that enhances the ground state chemical reaction rate constant when the cavity mode frequency matches the vibrational transition frequency. The exact simulation predicts that the VSC-modified rate constant will change quadratically as the light–matter coupling strength increases. When changing the cavity lifetime from the lossy limit to the lossless limit, the numerically exact results predict that there will be a turnover of the rate constant. Based on the numerical observations, we present an analytic rate theory to explain the observed sharp resonance peak of the rate profile when tuning the cavity frequency to match the quantum transition frequency of the vibrational ground state to excited states. This rate theory further explains the origin of the broadening of the rate profile. The analytic rate theory agrees with the numerical results under the golden rule limit and the short cavity lifetime limit. To the best of our knowledge, this is the first analytic theory that is able to explain the sharp resonance behavior of the VSC-modified rate profile when coupling an adiabatic ground state chemical reaction to the cavity. We envision that both the numerical analysis and the analytic theory will offer invaluable theoretical insights into the fundamental mechanism of the VSC-induced rate constant modifications in polariton chemistry.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0159791</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chemical reactions ; Chemistry ; Coupling ; Equations of motion ; Ground state ; Mathematical analysis ; Numerical analysis ; Oxidation ; Polaritons ; Quantum theory ; Rate theory ; Resonance ; Simulation ; Vibration mode</subject><ispartof>The Journal of chemical physics, 2023-08, Vol.159 (8)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-991d3da2e2d513f461cce64cb50c0cd87f2675778e31201c6d0b045f5edfcd5c3</citedby><cites>FETCH-LOGICAL-c325t-991d3da2e2d513f461cce64cb50c0cd87f2675778e31201c6d0b045f5edfcd5c3</cites><orcidid>0000-0003-3188-020X ; 0000-0002-8639-9299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0159791$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Ying, Wenxiang</creatorcontrib><creatorcontrib>Huo, Pengfei</creatorcontrib><title>Resonance theory and quantum dynamics simulations of vibrational polariton chemistry</title><title>The Journal of chemical physics</title><description>We present numerically exact quantum dynamics simulations using the hierarchical equation of motion approach to investigate the resonance enhancement of chemical reactions due to the vibrational strong coupling (VSC) in polariton chemistry. The results reveal that the cavity mode acts like a “rate-promoting vibrational mode” that enhances the ground state chemical reaction rate constant when the cavity mode frequency matches the vibrational transition frequency. The exact simulation predicts that the VSC-modified rate constant will change quadratically as the light–matter coupling strength increases. When changing the cavity lifetime from the lossy limit to the lossless limit, the numerically exact results predict that there will be a turnover of the rate constant. Based on the numerical observations, we present an analytic rate theory to explain the observed sharp resonance peak of the rate profile when tuning the cavity frequency to match the quantum transition frequency of the vibrational ground state to excited states. This rate theory further explains the origin of the broadening of the rate profile. The analytic rate theory agrees with the numerical results under the golden rule limit and the short cavity lifetime limit. To the best of our knowledge, this is the first analytic theory that is able to explain the sharp resonance behavior of the VSC-modified rate profile when coupling an adiabatic ground state chemical reaction to the cavity. We envision that both the numerical analysis and the analytic theory will offer invaluable theoretical insights into the fundamental mechanism of the VSC-induced rate constant modifications in polariton chemistry.</description><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Coupling</subject><subject>Equations of motion</subject><subject>Ground state</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>Oxidation</subject><subject>Polaritons</subject><subject>Quantum theory</subject><subject>Rate theory</subject><subject>Resonance</subject><subject>Simulation</subject><subject>Vibration mode</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCs7pwf8g4EWFzpe0SZujiL9gIMg8lyxJWUabbEkq9L-3rjt58PR48OH7Hl-ErgksCPD8gS2AMFEKcoJmBCqRlVzAKZoBUJIJDvwcXcS4BQBS0mKGVp8meiedMjhtjA8Dlk7jfS9d6jusByc7qyKOtutbmax3EfsGf9t1OGyyxTvfymCTd1htTGdjCsMlOmtkG83Vcc7R18vz6uktW368vj89LjOVU5YyIYjOtaSGakbypuBEKcMLtWagQOmqbCgvWVlWJicUiOIa1lCwhhndKM1UPke3U-4u-H1vYqrH-8q0rXTG97GmFSsEr_KyGunNH7r1fRj_nxQvBDA6qrtJqeBjDKapd8F2Mgw1gfq335rVx35Hez_ZqGw6lPEP_gHiYHsZ</recordid><startdate>20230828</startdate><enddate>20230828</enddate><creator>Ying, Wenxiang</creator><creator>Huo, Pengfei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3188-020X</orcidid><orcidid>https://orcid.org/0000-0002-8639-9299</orcidid></search><sort><creationdate>20230828</creationdate><title>Resonance theory and quantum dynamics simulations of vibrational polariton chemistry</title><author>Ying, Wenxiang ; Huo, Pengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-991d3da2e2d513f461cce64cb50c0cd87f2675778e31201c6d0b045f5edfcd5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Coupling</topic><topic>Equations of motion</topic><topic>Ground state</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>Oxidation</topic><topic>Polaritons</topic><topic>Quantum theory</topic><topic>Rate theory</topic><topic>Resonance</topic><topic>Simulation</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ying, Wenxiang</creatorcontrib><creatorcontrib>Huo, Pengfei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ying, Wenxiang</au><au>Huo, Pengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonance theory and quantum dynamics simulations of vibrational polariton chemistry</atitle><jtitle>The Journal of chemical physics</jtitle><date>2023-08-28</date><risdate>2023</risdate><volume>159</volume><issue>8</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We present numerically exact quantum dynamics simulations using the hierarchical equation of motion approach to investigate the resonance enhancement of chemical reactions due to the vibrational strong coupling (VSC) in polariton chemistry. The results reveal that the cavity mode acts like a “rate-promoting vibrational mode” that enhances the ground state chemical reaction rate constant when the cavity mode frequency matches the vibrational transition frequency. The exact simulation predicts that the VSC-modified rate constant will change quadratically as the light–matter coupling strength increases. When changing the cavity lifetime from the lossy limit to the lossless limit, the numerically exact results predict that there will be a turnover of the rate constant. Based on the numerical observations, we present an analytic rate theory to explain the observed sharp resonance peak of the rate profile when tuning the cavity frequency to match the quantum transition frequency of the vibrational ground state to excited states. This rate theory further explains the origin of the broadening of the rate profile. The analytic rate theory agrees with the numerical results under the golden rule limit and the short cavity lifetime limit. To the best of our knowledge, this is the first analytic theory that is able to explain the sharp resonance behavior of the VSC-modified rate profile when coupling an adiabatic ground state chemical reaction to the cavity. We envision that both the numerical analysis and the analytic theory will offer invaluable theoretical insights into the fundamental mechanism of the VSC-induced rate constant modifications in polariton chemistry.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0159791</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-3188-020X</orcidid><orcidid>https://orcid.org/0000-0002-8639-9299</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-08, Vol.159 (8)
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0159791
source AIP Journals Complete; Alma/SFX Local Collection
subjects Chemical reactions
Chemistry
Coupling
Equations of motion
Ground state
Mathematical analysis
Numerical analysis
Oxidation
Polaritons
Quantum theory
Rate theory
Resonance
Simulation
Vibration mode
title Resonance theory and quantum dynamics simulations of vibrational polariton chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonance%20theory%20and%20quantum%20dynamics%20simulations%20of%20vibrational%20polariton%20chemistry&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ying,%20Wenxiang&rft.date=2023-08-28&rft.volume=159&rft.issue=8&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0159791&rft_dat=%3Cproquest_cross%3E2854649052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854649052&rft_id=info:pmid/&rfr_iscdi=true