Hyaluronic acid turnover controls the severity of cerebral cavernous malformations in bioengineered human micro-vessels

Cerebral cavernous malformations (CCMs) are vascular lesions that predominantly form in blood vessels of the central nervous system upon loss of the CCM multimeric protein complex. The endothelial cells within CCM lesions are characterized by overactive MEKK3 kinase and KLF2/4 transcription factor s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APL bioengineering 2024-03, Vol.8 (1), p.016108-016108
Hauptverfasser: Yordanov, Teodor E., Keyser, Mikaela S., Enriquez Martinez, Marco A., Esposito, Tyron, Tefft, Juliann B., Morris, Elysse K., Labzin, Larisa I., Stehbens, Samantha J., Rowan, Alan E., Hogan, Benjamin M., Chen, Christopher S., Lauko, Jan, Lagendijk, Anne K.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 016108
container_issue 1
container_start_page 016108
container_title APL bioengineering
container_volume 8
creator Yordanov, Teodor E.
Keyser, Mikaela S.
Enriquez Martinez, Marco A.
Esposito, Tyron
Tefft, Juliann B.
Morris, Elysse K.
Labzin, Larisa I.
Stehbens, Samantha J.
Rowan, Alan E.
Hogan, Benjamin M.
Chen, Christopher S.
Lauko, Jan
Lagendijk, Anne K.
description Cerebral cavernous malformations (CCMs) are vascular lesions that predominantly form in blood vessels of the central nervous system upon loss of the CCM multimeric protein complex. The endothelial cells within CCM lesions are characterized by overactive MEKK3 kinase and KLF2/4 transcription factor signaling, leading to pathological changes such as increased endothelial cell spreading and reduced junctional integrity. Concomitant to aberrant endothelial cell signaling, non-autonomous signals from the extracellular matrix (ECM) have also been implicated in CCM lesion growth and these factors might explain why CCM lesions mainly develop in the central nervous system. Here, we adapted a three-dimensional microfluidic system to examine CCM1 deficient human micro-vessels in distinctive extracellular matrices. We validate that pathological hallmarks are maintained in this model. We further show that key genes responsible for homeostasis of hyaluronic acid, a major extracellular matrix component of the central nervous system, are dysregulated in CCM. Supplementing the matrix in our model with distinct forms of hyaluronic acid inhibits pathological cell spreading and rescues barrier function. Hyaluronic acid acts by dampening cell–matrix adhesion signaling in CCM, either downstream or in parallel of KLF2/4. This study provides a proof-of-principle that ECM embedded 3D microfluidic models are ideally suited to identify how changes in ECM structure and signaling impact vascular malformations.
doi_str_mv 10.1063/5.0159330
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0159330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a60ddf22761145ba8d3826e7dbcf0896</doaj_id><sourcerecordid>2926520929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-cae54d18bf233d125e9edd2a50d97ab2b5681e13f383e1897e03677c24fedf353</originalsourceid><addsrcrecordid>eNp9kU1vVCEYhW-Mxja1C_-AYakmU_m4wGVlTGM_kiZudE248DJDw4UK904z_16cGZt24wpyeHJ433O67j3BFwQL9oVfYMIVY_hVd0p7yVZ0kPL1s_tJd17rPcaYEqYUxW-7EzYwTomgp93jzc7EpeQULDI2ODQvJeUtFGRzmkuOFc0bQBWaFOYdyh5ZKDAWE5E1TUx5qWgy0ecymTnkVFFIaAwZ0jokaKxDm2UyCU3BlrzaQq0Q67vujTexwvnxPOt-XX3_eXmzuvtxfXv57W5leybnlTXAe0eG0VPGHKEcFDhHDcdOSTPSkYuBAGG-bQRkUBIwE1Ja2ntwnnF21t0efF029_qhhMmUnc4m6L2Qy1qbMgcbQRuBnfOUSkFIz0czODZQAdKN1uNBieb19eD1sIwTOAstIBNfmL58SWGj13mrCR5Ej_fTfDw6lPx7gTrrKVQLMZoELUdNFRWcYkVVQz8d0BZarQX80z8E67_Fa66PxTf2w_PBnsh_NTfg8wGoNsz7lv7j9ge2f7jX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926520929</pqid></control><display><type>article</type><title>Hyaluronic acid turnover controls the severity of cerebral cavernous malformations in bioengineered human micro-vessels</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Yordanov, Teodor E. ; Keyser, Mikaela S. ; Enriquez Martinez, Marco A. ; Esposito, Tyron ; Tefft, Juliann B. ; Morris, Elysse K. ; Labzin, Larisa I. ; Stehbens, Samantha J. ; Rowan, Alan E. ; Hogan, Benjamin M. ; Chen, Christopher S. ; Lauko, Jan ; Lagendijk, Anne K.</creator><creatorcontrib>Yordanov, Teodor E. ; Keyser, Mikaela S. ; Enriquez Martinez, Marco A. ; Esposito, Tyron ; Tefft, Juliann B. ; Morris, Elysse K. ; Labzin, Larisa I. ; Stehbens, Samantha J. ; Rowan, Alan E. ; Hogan, Benjamin M. ; Chen, Christopher S. ; Lauko, Jan ; Lagendijk, Anne K.</creatorcontrib><description>Cerebral cavernous malformations (CCMs) are vascular lesions that predominantly form in blood vessels of the central nervous system upon loss of the CCM multimeric protein complex. The endothelial cells within CCM lesions are characterized by overactive MEKK3 kinase and KLF2/4 transcription factor signaling, leading to pathological changes such as increased endothelial cell spreading and reduced junctional integrity. Concomitant to aberrant endothelial cell signaling, non-autonomous signals from the extracellular matrix (ECM) have also been implicated in CCM lesion growth and these factors might explain why CCM lesions mainly develop in the central nervous system. Here, we adapted a three-dimensional microfluidic system to examine CCM1 deficient human micro-vessels in distinctive extracellular matrices. We validate that pathological hallmarks are maintained in this model. We further show that key genes responsible for homeostasis of hyaluronic acid, a major extracellular matrix component of the central nervous system, are dysregulated in CCM. Supplementing the matrix in our model with distinct forms of hyaluronic acid inhibits pathological cell spreading and rescues barrier function. Hyaluronic acid acts by dampening cell–matrix adhesion signaling in CCM, either downstream or in parallel of KLF2/4. This study provides a proof-of-principle that ECM embedded 3D microfluidic models are ideally suited to identify how changes in ECM structure and signaling impact vascular malformations.</description><identifier>ISSN: 2473-2877</identifier><identifier>EISSN: 2473-2877</identifier><identifier>DOI: 10.1063/5.0159330</identifier><identifier>PMID: 38352162</identifier><identifier>CODEN: ABPID9</identifier><language>eng</language><publisher>United States: AIP Publishing LLC</publisher><ispartof>APL bioengineering, 2024-03, Vol.8 (1), p.016108-016108</ispartof><rights>Author(s)</rights><rights>2024 Author(s).</rights><rights>2024 Author(s). 2024 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c437t-cae54d18bf233d125e9edd2a50d97ab2b5681e13f383e1897e03677c24fedf353</cites><orcidid>0000-0001-9098-4493 ; 0000-0002-6587-6500 ; 0000-0002-8826-665X ; 0000-0002-5241-2715 ; 0000-0003-0728-3851 ; 0000-0003-2445-8449 ; 0000-0003-4801-0673 ; 0000-0002-0651-7065 ; 0000-0003-0089-5556 ; 0000-0002-8145-2708 ; 0000-0003-1246-1608 ; 0000-0001-8459-1853 ; 0009-0000-5009-6504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864035/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864035/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38352162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yordanov, Teodor E.</creatorcontrib><creatorcontrib>Keyser, Mikaela S.</creatorcontrib><creatorcontrib>Enriquez Martinez, Marco A.</creatorcontrib><creatorcontrib>Esposito, Tyron</creatorcontrib><creatorcontrib>Tefft, Juliann B.</creatorcontrib><creatorcontrib>Morris, Elysse K.</creatorcontrib><creatorcontrib>Labzin, Larisa I.</creatorcontrib><creatorcontrib>Stehbens, Samantha J.</creatorcontrib><creatorcontrib>Rowan, Alan E.</creatorcontrib><creatorcontrib>Hogan, Benjamin M.</creatorcontrib><creatorcontrib>Chen, Christopher S.</creatorcontrib><creatorcontrib>Lauko, Jan</creatorcontrib><creatorcontrib>Lagendijk, Anne K.</creatorcontrib><title>Hyaluronic acid turnover controls the severity of cerebral cavernous malformations in bioengineered human micro-vessels</title><title>APL bioengineering</title><addtitle>APL Bioeng</addtitle><description>Cerebral cavernous malformations (CCMs) are vascular lesions that predominantly form in blood vessels of the central nervous system upon loss of the CCM multimeric protein complex. The endothelial cells within CCM lesions are characterized by overactive MEKK3 kinase and KLF2/4 transcription factor signaling, leading to pathological changes such as increased endothelial cell spreading and reduced junctional integrity. Concomitant to aberrant endothelial cell signaling, non-autonomous signals from the extracellular matrix (ECM) have also been implicated in CCM lesion growth and these factors might explain why CCM lesions mainly develop in the central nervous system. Here, we adapted a three-dimensional microfluidic system to examine CCM1 deficient human micro-vessels in distinctive extracellular matrices. We validate that pathological hallmarks are maintained in this model. We further show that key genes responsible for homeostasis of hyaluronic acid, a major extracellular matrix component of the central nervous system, are dysregulated in CCM. Supplementing the matrix in our model with distinct forms of hyaluronic acid inhibits pathological cell spreading and rescues barrier function. Hyaluronic acid acts by dampening cell–matrix adhesion signaling in CCM, either downstream or in parallel of KLF2/4. This study provides a proof-of-principle that ECM embedded 3D microfluidic models are ideally suited to identify how changes in ECM structure and signaling impact vascular malformations.</description><issn>2473-2877</issn><issn>2473-2877</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1vVCEYhW-Mxja1C_-AYakmU_m4wGVlTGM_kiZudE248DJDw4UK904z_16cGZt24wpyeHJ433O67j3BFwQL9oVfYMIVY_hVd0p7yVZ0kPL1s_tJd17rPcaYEqYUxW-7EzYwTomgp93jzc7EpeQULDI2ODQvJeUtFGRzmkuOFc0bQBWaFOYdyh5ZKDAWE5E1TUx5qWgy0ecymTnkVFFIaAwZ0jokaKxDm2UyCU3BlrzaQq0Q67vujTexwvnxPOt-XX3_eXmzuvtxfXv57W5leybnlTXAe0eG0VPGHKEcFDhHDcdOSTPSkYuBAGG-bQRkUBIwE1Ja2ntwnnF21t0efF029_qhhMmUnc4m6L2Qy1qbMgcbQRuBnfOUSkFIz0czODZQAdKN1uNBieb19eD1sIwTOAstIBNfmL58SWGj13mrCR5Ej_fTfDw6lPx7gTrrKVQLMZoELUdNFRWcYkVVQz8d0BZarQX80z8E67_Fa66PxTf2w_PBnsh_NTfg8wGoNsz7lv7j9ge2f7jX</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Yordanov, Teodor E.</creator><creator>Keyser, Mikaela S.</creator><creator>Enriquez Martinez, Marco A.</creator><creator>Esposito, Tyron</creator><creator>Tefft, Juliann B.</creator><creator>Morris, Elysse K.</creator><creator>Labzin, Larisa I.</creator><creator>Stehbens, Samantha J.</creator><creator>Rowan, Alan E.</creator><creator>Hogan, Benjamin M.</creator><creator>Chen, Christopher S.</creator><creator>Lauko, Jan</creator><creator>Lagendijk, Anne K.</creator><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9098-4493</orcidid><orcidid>https://orcid.org/0000-0002-6587-6500</orcidid><orcidid>https://orcid.org/0000-0002-8826-665X</orcidid><orcidid>https://orcid.org/0000-0002-5241-2715</orcidid><orcidid>https://orcid.org/0000-0003-0728-3851</orcidid><orcidid>https://orcid.org/0000-0003-2445-8449</orcidid><orcidid>https://orcid.org/0000-0003-4801-0673</orcidid><orcidid>https://orcid.org/0000-0002-0651-7065</orcidid><orcidid>https://orcid.org/0000-0003-0089-5556</orcidid><orcidid>https://orcid.org/0000-0002-8145-2708</orcidid><orcidid>https://orcid.org/0000-0003-1246-1608</orcidid><orcidid>https://orcid.org/0000-0001-8459-1853</orcidid><orcidid>https://orcid.org/0009-0000-5009-6504</orcidid></search><sort><creationdate>20240301</creationdate><title>Hyaluronic acid turnover controls the severity of cerebral cavernous malformations in bioengineered human micro-vessels</title><author>Yordanov, Teodor E. ; Keyser, Mikaela S. ; Enriquez Martinez, Marco A. ; Esposito, Tyron ; Tefft, Juliann B. ; Morris, Elysse K. ; Labzin, Larisa I. ; Stehbens, Samantha J. ; Rowan, Alan E. ; Hogan, Benjamin M. ; Chen, Christopher S. ; Lauko, Jan ; Lagendijk, Anne K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-cae54d18bf233d125e9edd2a50d97ab2b5681e13f383e1897e03677c24fedf353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yordanov, Teodor E.</creatorcontrib><creatorcontrib>Keyser, Mikaela S.</creatorcontrib><creatorcontrib>Enriquez Martinez, Marco A.</creatorcontrib><creatorcontrib>Esposito, Tyron</creatorcontrib><creatorcontrib>Tefft, Juliann B.</creatorcontrib><creatorcontrib>Morris, Elysse K.</creatorcontrib><creatorcontrib>Labzin, Larisa I.</creatorcontrib><creatorcontrib>Stehbens, Samantha J.</creatorcontrib><creatorcontrib>Rowan, Alan E.</creatorcontrib><creatorcontrib>Hogan, Benjamin M.</creatorcontrib><creatorcontrib>Chen, Christopher S.</creatorcontrib><creatorcontrib>Lauko, Jan</creatorcontrib><creatorcontrib>Lagendijk, Anne K.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yordanov, Teodor E.</au><au>Keyser, Mikaela S.</au><au>Enriquez Martinez, Marco A.</au><au>Esposito, Tyron</au><au>Tefft, Juliann B.</au><au>Morris, Elysse K.</au><au>Labzin, Larisa I.</au><au>Stehbens, Samantha J.</au><au>Rowan, Alan E.</au><au>Hogan, Benjamin M.</au><au>Chen, Christopher S.</au><au>Lauko, Jan</au><au>Lagendijk, Anne K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyaluronic acid turnover controls the severity of cerebral cavernous malformations in bioengineered human micro-vessels</atitle><jtitle>APL bioengineering</jtitle><addtitle>APL Bioeng</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>8</volume><issue>1</issue><spage>016108</spage><epage>016108</epage><pages>016108-016108</pages><issn>2473-2877</issn><eissn>2473-2877</eissn><coden>ABPID9</coden><abstract>Cerebral cavernous malformations (CCMs) are vascular lesions that predominantly form in blood vessels of the central nervous system upon loss of the CCM multimeric protein complex. The endothelial cells within CCM lesions are characterized by overactive MEKK3 kinase and KLF2/4 transcription factor signaling, leading to pathological changes such as increased endothelial cell spreading and reduced junctional integrity. Concomitant to aberrant endothelial cell signaling, non-autonomous signals from the extracellular matrix (ECM) have also been implicated in CCM lesion growth and these factors might explain why CCM lesions mainly develop in the central nervous system. Here, we adapted a three-dimensional microfluidic system to examine CCM1 deficient human micro-vessels in distinctive extracellular matrices. We validate that pathological hallmarks are maintained in this model. We further show that key genes responsible for homeostasis of hyaluronic acid, a major extracellular matrix component of the central nervous system, are dysregulated in CCM. Supplementing the matrix in our model with distinct forms of hyaluronic acid inhibits pathological cell spreading and rescues barrier function. Hyaluronic acid acts by dampening cell–matrix adhesion signaling in CCM, either downstream or in parallel of KLF2/4. This study provides a proof-of-principle that ECM embedded 3D microfluidic models are ideally suited to identify how changes in ECM structure and signaling impact vascular malformations.</abstract><cop>United States</cop><pub>AIP Publishing LLC</pub><pmid>38352162</pmid><doi>10.1063/5.0159330</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9098-4493</orcidid><orcidid>https://orcid.org/0000-0002-6587-6500</orcidid><orcidid>https://orcid.org/0000-0002-8826-665X</orcidid><orcidid>https://orcid.org/0000-0002-5241-2715</orcidid><orcidid>https://orcid.org/0000-0003-0728-3851</orcidid><orcidid>https://orcid.org/0000-0003-2445-8449</orcidid><orcidid>https://orcid.org/0000-0003-4801-0673</orcidid><orcidid>https://orcid.org/0000-0002-0651-7065</orcidid><orcidid>https://orcid.org/0000-0003-0089-5556</orcidid><orcidid>https://orcid.org/0000-0002-8145-2708</orcidid><orcidid>https://orcid.org/0000-0003-1246-1608</orcidid><orcidid>https://orcid.org/0000-0001-8459-1853</orcidid><orcidid>https://orcid.org/0009-0000-5009-6504</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2473-2877
ispartof APL bioengineering, 2024-03, Vol.8 (1), p.016108-016108
issn 2473-2877
2473-2877
language eng
recordid cdi_crossref_primary_10_1063_5_0159330
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title Hyaluronic acid turnover controls the severity of cerebral cavernous malformations in bioengineered human micro-vessels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T23%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyaluronic%20acid%20turnover%20controls%20the%20severity%20of%20cerebral%20cavernous%20malformations%20in%20bioengineered%20human%20micro-vessels&rft.jtitle=APL%20bioengineering&rft.au=Yordanov,%20Teodor%20E.&rft.date=2024-03-01&rft.volume=8&rft.issue=1&rft.spage=016108&rft.epage=016108&rft.pages=016108-016108&rft.issn=2473-2877&rft.eissn=2473-2877&rft.coden=ABPID9&rft_id=info:doi/10.1063/5.0159330&rft_dat=%3Cproquest_cross%3E2926520929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926520929&rft_id=info:pmid/38352162&rft_doaj_id=oai_doaj_org_article_a60ddf22761145ba8d3826e7dbcf0896&rfr_iscdi=true