Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics

The STEP (Stability, Transport, Equilibrium, and Pedestal) integrated-modeling tool has been developed in OMFIT to predict stable, tokamak equilibria self-consistently with core-transport and pedestal calculations. STEP couples theory-based codes to integrate a variety of physics, including magnetoh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2023-09, Vol.30 (9)
Hauptverfasser: Lyons, B. C., McClenaghan, J., Slendebroek, T., Meneghini, O., Neiser, T. F., Smith, S. P., Weisberg, D. B., Belli, E. A., Candy, J., Hanson, J. M., Lao, L. L., Logan, N. C., Saarelma, S., Sauter, O., Snyder, P. B., Staebler, G. M., Thome, K. E., Turnbull, A. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physics of plasmas
container_volume 30
creator Lyons, B. C.
McClenaghan, J.
Slendebroek, T.
Meneghini, O.
Neiser, T. F.
Smith, S. P.
Weisberg, D. B.
Belli, E. A.
Candy, J.
Hanson, J. M.
Lao, L. L.
Logan, N. C.
Saarelma, S.
Sauter, O.
Snyder, P. B.
Staebler, G. M.
Thome, K. E.
Turnbull, A. D.
description The STEP (Stability, Transport, Equilibrium, and Pedestal) integrated-modeling tool has been developed in OMFIT to predict stable, tokamak equilibria self-consistently with core-transport and pedestal calculations. STEP couples theory-based codes to integrate a variety of physics, including magnetohydrodynamic stability, transport, equilibrium, pedestal formation, and current-drive, heating, and fueling. The input/output of each code is interfaced with a centralized ITER-Integrated Modelling & Analysis Suite data structure, allowing codes to be run in any order and enabling open-loop, feedback, and optimization workflows. This paradigm simplifies the integration of new codes, making STEP highly extensible. STEP has been verified against a published benchmark of six different integrated models. Core-pedestal calculations with STEP have been successfully validated against individual DIII-D H-mode discharges and across more than 500 discharges of the H 98 , y 2 database, with a mean error in confinement time from experiment less than 19%. STEP has also reproduced results in less conventional DIII-D scenarios, including negative-central-shear and negative-triangularity plasmas. Predictive STEP modeling has been used to assess performance in several tokamak reactors. Simulations of a high-field, large-aspect-ratio reactor show significantly lower fusion power than predicted by a zero-dimensional study, demonstrating the limitations of scaling-law extrapolations. STEP predictions have found promising scenarios for an EXhaust and Confinement Integration Tokamak Experiment, including a high-pressure, 80%-bootstrap-fraction plasma. ITER modeling with STEP has shown that pellet fueling enhances fusion gain in both the baseline and advanced-inductive scenarios. Finally, STEP predictions for the SPARC baseline scenario are in good agreement with published results from the physics basis.
doi_str_mv 10.1063/5.0156877
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0156877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866155962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-bd1ffbb319bf77fc26bba7133ad25525a1008628779ba6d1f8c7551b32e66ad03</originalsourceid><addsrcrecordid>eNp90E9LwzAUAPAiCs7pwW8Q9KS0M2mbpD3KcCoMvCh4i0mabtm6pEtScN_ejO7s6T0eP96_JLlFcIYgKZ7wDCJMKkrPkgmCVZ1RQsvzY05hRkj5fZlceb-BEJYEV5PkZ9GpXy06lQJtglo5HlQDdrZRnTYrYFsQ7Jbv-Bb4wIXudDikIDhufG9dSIHaD7EonB52KeCmAb1qVKQd6NcHr6W_Ti5a3nl1c4rT5Gvx8jl_y5Yfr-_z52UmC1yGTDSobYUoUC1aSluZEyE4RUXBmxzjHHMEYUXyeFgtOIm4khRjJIpcEcIbWEyTu7Gv9UEzL3VQci2tMUoGhuqalIhEdD-i3tn9EPdkGzs4E_dieUUIwrgmeVQPo5LOeu9Uy3qnd9wdGILs-GWG2enL0T6O9jiRB23NP_gPvet8jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866155962</pqid></control><display><type>article</type><title>Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lyons, B. C. ; McClenaghan, J. ; Slendebroek, T. ; Meneghini, O. ; Neiser, T. F. ; Smith, S. P. ; Weisberg, D. B. ; Belli, E. A. ; Candy, J. ; Hanson, J. M. ; Lao, L. L. ; Logan, N. C. ; Saarelma, S. ; Sauter, O. ; Snyder, P. B. ; Staebler, G. M. ; Thome, K. E. ; Turnbull, A. D.</creator><creatorcontrib>Lyons, B. C. ; McClenaghan, J. ; Slendebroek, T. ; Meneghini, O. ; Neiser, T. F. ; Smith, S. P. ; Weisberg, D. B. ; Belli, E. A. ; Candy, J. ; Hanson, J. M. ; Lao, L. L. ; Logan, N. C. ; Saarelma, S. ; Sauter, O. ; Snyder, P. B. ; Staebler, G. M. ; Thome, K. E. ; Turnbull, A. D. ; General Atomics, San Diego, CA (United States)</creatorcontrib><description>The STEP (Stability, Transport, Equilibrium, and Pedestal) integrated-modeling tool has been developed in OMFIT to predict stable, tokamak equilibria self-consistently with core-transport and pedestal calculations. STEP couples theory-based codes to integrate a variety of physics, including magnetohydrodynamic stability, transport, equilibrium, pedestal formation, and current-drive, heating, and fueling. The input/output of each code is interfaced with a centralized ITER-Integrated Modelling &amp; Analysis Suite data structure, allowing codes to be run in any order and enabling open-loop, feedback, and optimization workflows. This paradigm simplifies the integration of new codes, making STEP highly extensible. STEP has been verified against a published benchmark of six different integrated models. Core-pedestal calculations with STEP have been successfully validated against individual DIII-D H-mode discharges and across more than 500 discharges of the H 98 , y 2 database, with a mean error in confinement time from experiment less than 19%. STEP has also reproduced results in less conventional DIII-D scenarios, including negative-central-shear and negative-triangularity plasmas. Predictive STEP modeling has been used to assess performance in several tokamak reactors. Simulations of a high-field, large-aspect-ratio reactor show significantly lower fusion power than predicted by a zero-dimensional study, demonstrating the limitations of scaling-law extrapolations. STEP predictions have found promising scenarios for an EXhaust and Confinement Integration Tokamak Experiment, including a high-pressure, 80%-bootstrap-fraction plasma. ITER modeling with STEP has shown that pellet fueling enhances fusion gain in both the baseline and advanced-inductive scenarios. Finally, STEP predictions for the SPARC baseline scenario are in good agreement with published results from the physics basis.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0156877</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Aspect ratio ; Codes ; Confinement ; Data structures ; Discharge ; Equilibrium ; Fusion energy ; Fusion experiments ; Fusion reactors ; Magnetic confinement fusion ; Magnetohydrodynamic stability ; Magnetohydrodynamics ; Modelling ; Nuclear power plants ; Optimization ; Physics ; Plasma confinement ; Plasma heating ; Plasma physics ; Tokamak devices ; Tokamaks</subject><ispartof>Physics of plasmas, 2023-09, Vol.30 (9)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-bd1ffbb319bf77fc26bba7133ad25525a1008628779ba6d1f8c7551b32e66ad03</citedby><cites>FETCH-LOGICAL-c354t-bd1ffbb319bf77fc26bba7133ad25525a1008628779ba6d1f8c7551b32e66ad03</cites><orcidid>0000-0003-1937-2675 ; 0000-0002-3268-7359 ; 0000-0002-1944-1733 ; 0000-0002-6838-2194 ; 0000-0003-4735-0991 ; 0000-0002-8763-3016 ; 0000-0001-5100-5483 ; 0000-0002-0099-6675 ; 0000-0002-4801-3922 ; 0000-0003-3974-8393 ; 0000-0001-7504-7645 ; 0000-0003-3232-1581 ; 0000-0001-7947-2841 ; 0000-0003-2432-4870 ; 0000-0003-1526-380X ; 0000-0003-3884-6485 ; 0000-0003-4510-0884 ; 0000-0002-0613-4232 ; 0000000200996675 ; 0000000332321581 ; 0000000206134232 ; 0000000339748393 ; 0000000219441733 ; 0000000319372675 ; 0000000345100884 ; 0000000268382194 ; 000000031526380X ; 0000000179472841 ; 0000000347350991 ; 0000000151005483 ; 0000000175047645 ; 0000000287633016 ; 0000000232687359 ; 0000000248013922 ; 0000000338846485 ; 0000000324324870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0156877$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1996416$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyons, B. C.</creatorcontrib><creatorcontrib>McClenaghan, J.</creatorcontrib><creatorcontrib>Slendebroek, T.</creatorcontrib><creatorcontrib>Meneghini, O.</creatorcontrib><creatorcontrib>Neiser, T. F.</creatorcontrib><creatorcontrib>Smith, S. P.</creatorcontrib><creatorcontrib>Weisberg, D. B.</creatorcontrib><creatorcontrib>Belli, E. A.</creatorcontrib><creatorcontrib>Candy, J.</creatorcontrib><creatorcontrib>Hanson, J. M.</creatorcontrib><creatorcontrib>Lao, L. L.</creatorcontrib><creatorcontrib>Logan, N. C.</creatorcontrib><creatorcontrib>Saarelma, S.</creatorcontrib><creatorcontrib>Sauter, O.</creatorcontrib><creatorcontrib>Snyder, P. B.</creatorcontrib><creatorcontrib>Staebler, G. M.</creatorcontrib><creatorcontrib>Thome, K. E.</creatorcontrib><creatorcontrib>Turnbull, A. D.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><title>Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics</title><title>Physics of plasmas</title><description>The STEP (Stability, Transport, Equilibrium, and Pedestal) integrated-modeling tool has been developed in OMFIT to predict stable, tokamak equilibria self-consistently with core-transport and pedestal calculations. STEP couples theory-based codes to integrate a variety of physics, including magnetohydrodynamic stability, transport, equilibrium, pedestal formation, and current-drive, heating, and fueling. The input/output of each code is interfaced with a centralized ITER-Integrated Modelling &amp; Analysis Suite data structure, allowing codes to be run in any order and enabling open-loop, feedback, and optimization workflows. This paradigm simplifies the integration of new codes, making STEP highly extensible. STEP has been verified against a published benchmark of six different integrated models. Core-pedestal calculations with STEP have been successfully validated against individual DIII-D H-mode discharges and across more than 500 discharges of the H 98 , y 2 database, with a mean error in confinement time from experiment less than 19%. STEP has also reproduced results in less conventional DIII-D scenarios, including negative-central-shear and negative-triangularity plasmas. Predictive STEP modeling has been used to assess performance in several tokamak reactors. Simulations of a high-field, large-aspect-ratio reactor show significantly lower fusion power than predicted by a zero-dimensional study, demonstrating the limitations of scaling-law extrapolations. STEP predictions have found promising scenarios for an EXhaust and Confinement Integration Tokamak Experiment, including a high-pressure, 80%-bootstrap-fraction plasma. ITER modeling with STEP has shown that pellet fueling enhances fusion gain in both the baseline and advanced-inductive scenarios. Finally, STEP predictions for the SPARC baseline scenario are in good agreement with published results from the physics basis.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Aspect ratio</subject><subject>Codes</subject><subject>Confinement</subject><subject>Data structures</subject><subject>Discharge</subject><subject>Equilibrium</subject><subject>Fusion energy</subject><subject>Fusion experiments</subject><subject>Fusion reactors</subject><subject>Magnetic confinement fusion</subject><subject>Magnetohydrodynamic stability</subject><subject>Magnetohydrodynamics</subject><subject>Modelling</subject><subject>Nuclear power plants</subject><subject>Optimization</subject><subject>Physics</subject><subject>Plasma confinement</subject><subject>Plasma heating</subject><subject>Plasma physics</subject><subject>Tokamak devices</subject><subject>Tokamaks</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAUAPAiCs7pwW8Q9KS0M2mbpD3KcCoMvCh4i0mabtm6pEtScN_ejO7s6T0eP96_JLlFcIYgKZ7wDCJMKkrPkgmCVZ1RQsvzY05hRkj5fZlceb-BEJYEV5PkZ9GpXy06lQJtglo5HlQDdrZRnTYrYFsQ7Jbv-Bb4wIXudDikIDhufG9dSIHaD7EonB52KeCmAb1qVKQd6NcHr6W_Ti5a3nl1c4rT5Gvx8jl_y5Yfr-_z52UmC1yGTDSobYUoUC1aSluZEyE4RUXBmxzjHHMEYUXyeFgtOIm4khRjJIpcEcIbWEyTu7Gv9UEzL3VQci2tMUoGhuqalIhEdD-i3tn9EPdkGzs4E_dieUUIwrgmeVQPo5LOeu9Uy3qnd9wdGILs-GWG2enL0T6O9jiRB23NP_gPvet8jw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Lyons, B. C.</creator><creator>McClenaghan, J.</creator><creator>Slendebroek, T.</creator><creator>Meneghini, O.</creator><creator>Neiser, T. F.</creator><creator>Smith, S. P.</creator><creator>Weisberg, D. B.</creator><creator>Belli, E. A.</creator><creator>Candy, J.</creator><creator>Hanson, J. M.</creator><creator>Lao, L. L.</creator><creator>Logan, N. C.</creator><creator>Saarelma, S.</creator><creator>Sauter, O.</creator><creator>Snyder, P. B.</creator><creator>Staebler, G. M.</creator><creator>Thome, K. E.</creator><creator>Turnbull, A. D.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1937-2675</orcidid><orcidid>https://orcid.org/0000-0002-3268-7359</orcidid><orcidid>https://orcid.org/0000-0002-1944-1733</orcidid><orcidid>https://orcid.org/0000-0002-6838-2194</orcidid><orcidid>https://orcid.org/0000-0003-4735-0991</orcidid><orcidid>https://orcid.org/0000-0002-8763-3016</orcidid><orcidid>https://orcid.org/0000-0001-5100-5483</orcidid><orcidid>https://orcid.org/0000-0002-0099-6675</orcidid><orcidid>https://orcid.org/0000-0002-4801-3922</orcidid><orcidid>https://orcid.org/0000-0003-3974-8393</orcidid><orcidid>https://orcid.org/0000-0001-7504-7645</orcidid><orcidid>https://orcid.org/0000-0003-3232-1581</orcidid><orcidid>https://orcid.org/0000-0001-7947-2841</orcidid><orcidid>https://orcid.org/0000-0003-2432-4870</orcidid><orcidid>https://orcid.org/0000-0003-1526-380X</orcidid><orcidid>https://orcid.org/0000-0003-3884-6485</orcidid><orcidid>https://orcid.org/0000-0003-4510-0884</orcidid><orcidid>https://orcid.org/0000-0002-0613-4232</orcidid><orcidid>https://orcid.org/0000000200996675</orcidid><orcidid>https://orcid.org/0000000332321581</orcidid><orcidid>https://orcid.org/0000000206134232</orcidid><orcidid>https://orcid.org/0000000339748393</orcidid><orcidid>https://orcid.org/0000000219441733</orcidid><orcidid>https://orcid.org/0000000319372675</orcidid><orcidid>https://orcid.org/0000000345100884</orcidid><orcidid>https://orcid.org/0000000268382194</orcidid><orcidid>https://orcid.org/000000031526380X</orcidid><orcidid>https://orcid.org/0000000179472841</orcidid><orcidid>https://orcid.org/0000000347350991</orcidid><orcidid>https://orcid.org/0000000151005483</orcidid><orcidid>https://orcid.org/0000000175047645</orcidid><orcidid>https://orcid.org/0000000287633016</orcidid><orcidid>https://orcid.org/0000000232687359</orcidid><orcidid>https://orcid.org/0000000248013922</orcidid><orcidid>https://orcid.org/0000000338846485</orcidid><orcidid>https://orcid.org/0000000324324870</orcidid></search><sort><creationdate>20230901</creationdate><title>Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics</title><author>Lyons, B. C. ; McClenaghan, J. ; Slendebroek, T. ; Meneghini, O. ; Neiser, T. F. ; Smith, S. P. ; Weisberg, D. B. ; Belli, E. A. ; Candy, J. ; Hanson, J. M. ; Lao, L. L. ; Logan, N. C. ; Saarelma, S. ; Sauter, O. ; Snyder, P. B. ; Staebler, G. M. ; Thome, K. E. ; Turnbull, A. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-bd1ffbb319bf77fc26bba7133ad25525a1008628779ba6d1f8c7551b32e66ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Aspect ratio</topic><topic>Codes</topic><topic>Confinement</topic><topic>Data structures</topic><topic>Discharge</topic><topic>Equilibrium</topic><topic>Fusion energy</topic><topic>Fusion experiments</topic><topic>Fusion reactors</topic><topic>Magnetic confinement fusion</topic><topic>Magnetohydrodynamic stability</topic><topic>Magnetohydrodynamics</topic><topic>Modelling</topic><topic>Nuclear power plants</topic><topic>Optimization</topic><topic>Physics</topic><topic>Plasma confinement</topic><topic>Plasma heating</topic><topic>Plasma physics</topic><topic>Tokamak devices</topic><topic>Tokamaks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyons, B. C.</creatorcontrib><creatorcontrib>McClenaghan, J.</creatorcontrib><creatorcontrib>Slendebroek, T.</creatorcontrib><creatorcontrib>Meneghini, O.</creatorcontrib><creatorcontrib>Neiser, T. F.</creatorcontrib><creatorcontrib>Smith, S. P.</creatorcontrib><creatorcontrib>Weisberg, D. B.</creatorcontrib><creatorcontrib>Belli, E. A.</creatorcontrib><creatorcontrib>Candy, J.</creatorcontrib><creatorcontrib>Hanson, J. M.</creatorcontrib><creatorcontrib>Lao, L. L.</creatorcontrib><creatorcontrib>Logan, N. C.</creatorcontrib><creatorcontrib>Saarelma, S.</creatorcontrib><creatorcontrib>Sauter, O.</creatorcontrib><creatorcontrib>Snyder, P. B.</creatorcontrib><creatorcontrib>Staebler, G. M.</creatorcontrib><creatorcontrib>Thome, K. E.</creatorcontrib><creatorcontrib>Turnbull, A. D.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyons, B. C.</au><au>McClenaghan, J.</au><au>Slendebroek, T.</au><au>Meneghini, O.</au><au>Neiser, T. F.</au><au>Smith, S. P.</au><au>Weisberg, D. B.</au><au>Belli, E. A.</au><au>Candy, J.</au><au>Hanson, J. M.</au><au>Lao, L. L.</au><au>Logan, N. C.</au><au>Saarelma, S.</au><au>Sauter, O.</au><au>Snyder, P. B.</au><au>Staebler, G. M.</au><au>Thome, K. E.</au><au>Turnbull, A. D.</au><aucorp>General Atomics, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics</atitle><jtitle>Physics of plasmas</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>30</volume><issue>9</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The STEP (Stability, Transport, Equilibrium, and Pedestal) integrated-modeling tool has been developed in OMFIT to predict stable, tokamak equilibria self-consistently with core-transport and pedestal calculations. STEP couples theory-based codes to integrate a variety of physics, including magnetohydrodynamic stability, transport, equilibrium, pedestal formation, and current-drive, heating, and fueling. The input/output of each code is interfaced with a centralized ITER-Integrated Modelling &amp; Analysis Suite data structure, allowing codes to be run in any order and enabling open-loop, feedback, and optimization workflows. This paradigm simplifies the integration of new codes, making STEP highly extensible. STEP has been verified against a published benchmark of six different integrated models. Core-pedestal calculations with STEP have been successfully validated against individual DIII-D H-mode discharges and across more than 500 discharges of the H 98 , y 2 database, with a mean error in confinement time from experiment less than 19%. STEP has also reproduced results in less conventional DIII-D scenarios, including negative-central-shear and negative-triangularity plasmas. Predictive STEP modeling has been used to assess performance in several tokamak reactors. Simulations of a high-field, large-aspect-ratio reactor show significantly lower fusion power than predicted by a zero-dimensional study, demonstrating the limitations of scaling-law extrapolations. STEP predictions have found promising scenarios for an EXhaust and Confinement Integration Tokamak Experiment, including a high-pressure, 80%-bootstrap-fraction plasma. ITER modeling with STEP has shown that pellet fueling enhances fusion gain in both the baseline and advanced-inductive scenarios. Finally, STEP predictions for the SPARC baseline scenario are in good agreement with published results from the physics basis.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0156877</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1937-2675</orcidid><orcidid>https://orcid.org/0000-0002-3268-7359</orcidid><orcidid>https://orcid.org/0000-0002-1944-1733</orcidid><orcidid>https://orcid.org/0000-0002-6838-2194</orcidid><orcidid>https://orcid.org/0000-0003-4735-0991</orcidid><orcidid>https://orcid.org/0000-0002-8763-3016</orcidid><orcidid>https://orcid.org/0000-0001-5100-5483</orcidid><orcidid>https://orcid.org/0000-0002-0099-6675</orcidid><orcidid>https://orcid.org/0000-0002-4801-3922</orcidid><orcidid>https://orcid.org/0000-0003-3974-8393</orcidid><orcidid>https://orcid.org/0000-0001-7504-7645</orcidid><orcidid>https://orcid.org/0000-0003-3232-1581</orcidid><orcidid>https://orcid.org/0000-0001-7947-2841</orcidid><orcidid>https://orcid.org/0000-0003-2432-4870</orcidid><orcidid>https://orcid.org/0000-0003-1526-380X</orcidid><orcidid>https://orcid.org/0000-0003-3884-6485</orcidid><orcidid>https://orcid.org/0000-0003-4510-0884</orcidid><orcidid>https://orcid.org/0000-0002-0613-4232</orcidid><orcidid>https://orcid.org/0000000200996675</orcidid><orcidid>https://orcid.org/0000000332321581</orcidid><orcidid>https://orcid.org/0000000206134232</orcidid><orcidid>https://orcid.org/0000000339748393</orcidid><orcidid>https://orcid.org/0000000219441733</orcidid><orcidid>https://orcid.org/0000000319372675</orcidid><orcidid>https://orcid.org/0000000345100884</orcidid><orcidid>https://orcid.org/0000000268382194</orcidid><orcidid>https://orcid.org/000000031526380X</orcidid><orcidid>https://orcid.org/0000000179472841</orcidid><orcidid>https://orcid.org/0000000347350991</orcidid><orcidid>https://orcid.org/0000000151005483</orcidid><orcidid>https://orcid.org/0000000175047645</orcidid><orcidid>https://orcid.org/0000000287633016</orcidid><orcidid>https://orcid.org/0000000232687359</orcidid><orcidid>https://orcid.org/0000000248013922</orcidid><orcidid>https://orcid.org/0000000338846485</orcidid><orcidid>https://orcid.org/0000000324324870</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2023-09, Vol.30 (9)
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_5_0156877
source AIP Journals Complete; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Aspect ratio
Codes
Confinement
Data structures
Discharge
Equilibrium
Fusion energy
Fusion experiments
Fusion reactors
Magnetic confinement fusion
Magnetohydrodynamic stability
Magnetohydrodynamics
Modelling
Nuclear power plants
Optimization
Physics
Plasma confinement
Plasma heating
Plasma physics
Tokamak devices
Tokamaks
title Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible,%20integrated%20modeling%20of%20tokamak%20stability,%20transport,%20equilibrium,%20and%20pedestal%20physics&rft.jtitle=Physics%20of%20plasmas&rft.au=Lyons,%20B.%20C.&rft.aucorp=General%20Atomics,%20San%20Diego,%20CA%20(United%20States)&rft.date=2023-09-01&rft.volume=30&rft.issue=9&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0156877&rft_dat=%3Cproquest_cross%3E2866155962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866155962&rft_id=info:pmid/&rfr_iscdi=true