Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics
The STEP (Stability, Transport, Equilibrium, and Pedestal) integrated-modeling tool has been developed in OMFIT to predict stable, tokamak equilibria self-consistently with core-transport and pedestal calculations. STEP couples theory-based codes to integrate a variety of physics, including magnetoh...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2023-09, Vol.30 (9) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 30 |
creator | Lyons, B. C. McClenaghan, J. Slendebroek, T. Meneghini, O. Neiser, T. F. Smith, S. P. Weisberg, D. B. Belli, E. A. Candy, J. Hanson, J. M. Lao, L. L. Logan, N. C. Saarelma, S. Sauter, O. Snyder, P. B. Staebler, G. M. Thome, K. E. Turnbull, A. D. |
description | The STEP (Stability, Transport, Equilibrium, and Pedestal) integrated-modeling tool has been developed in OMFIT to predict stable, tokamak equilibria self-consistently with core-transport and pedestal calculations. STEP couples theory-based codes to integrate a variety of physics, including magnetohydrodynamic stability, transport, equilibrium, pedestal formation, and current-drive, heating, and fueling. The input/output of each code is interfaced with a centralized ITER-Integrated Modelling & Analysis Suite data structure, allowing codes to be run in any order and enabling open-loop, feedback, and optimization workflows. This paradigm simplifies the integration of new codes, making STEP highly extensible. STEP has been verified against a published benchmark of six different integrated models. Core-pedestal calculations with STEP have been successfully validated against individual DIII-D H-mode discharges and across more than 500 discharges of the
H
98
,
y
2 database, with a mean error in confinement time from experiment less than 19%. STEP has also reproduced results in less conventional DIII-D scenarios, including negative-central-shear and negative-triangularity plasmas. Predictive STEP modeling has been used to assess performance in several tokamak reactors. Simulations of a high-field, large-aspect-ratio reactor show significantly lower fusion power than predicted by a zero-dimensional study, demonstrating the limitations of scaling-law extrapolations. STEP predictions have found promising scenarios for an EXhaust and Confinement Integration Tokamak Experiment, including a high-pressure, 80%-bootstrap-fraction plasma. ITER modeling with STEP has shown that pellet fueling enhances fusion gain in both the baseline and advanced-inductive scenarios. Finally, STEP predictions for the SPARC baseline scenario are in good agreement with published results from the physics basis. |
doi_str_mv | 10.1063/5.0156877 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0156877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866155962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-bd1ffbb319bf77fc26bba7133ad25525a1008628779ba6d1f8c7551b32e66ad03</originalsourceid><addsrcrecordid>eNp90E9LwzAUAPAiCs7pwW8Q9KS0M2mbpD3KcCoMvCh4i0mabtm6pEtScN_ejO7s6T0eP96_JLlFcIYgKZ7wDCJMKkrPkgmCVZ1RQsvzY05hRkj5fZlceb-BEJYEV5PkZ9GpXy06lQJtglo5HlQDdrZRnTYrYFsQ7Jbv-Bb4wIXudDikIDhufG9dSIHaD7EonB52KeCmAb1qVKQd6NcHr6W_Ti5a3nl1c4rT5Gvx8jl_y5Yfr-_z52UmC1yGTDSobYUoUC1aSluZEyE4RUXBmxzjHHMEYUXyeFgtOIm4khRjJIpcEcIbWEyTu7Gv9UEzL3VQci2tMUoGhuqalIhEdD-i3tn9EPdkGzs4E_dieUUIwrgmeVQPo5LOeu9Uy3qnd9wdGILs-GWG2enL0T6O9jiRB23NP_gPvet8jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866155962</pqid></control><display><type>article</type><title>Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lyons, B. C. ; McClenaghan, J. ; Slendebroek, T. ; Meneghini, O. ; Neiser, T. F. ; Smith, S. P. ; Weisberg, D. B. ; Belli, E. A. ; Candy, J. ; Hanson, J. M. ; Lao, L. L. ; Logan, N. C. ; Saarelma, S. ; Sauter, O. ; Snyder, P. B. ; Staebler, G. M. ; Thome, K. E. ; Turnbull, A. D.</creator><creatorcontrib>Lyons, B. C. ; McClenaghan, J. ; Slendebroek, T. ; Meneghini, O. ; Neiser, T. F. ; Smith, S. P. ; Weisberg, D. B. ; Belli, E. A. ; Candy, J. ; Hanson, J. M. ; Lao, L. L. ; Logan, N. C. ; Saarelma, S. ; Sauter, O. ; Snyder, P. B. ; Staebler, G. M. ; Thome, K. E. ; Turnbull, A. D. ; General Atomics, San Diego, CA (United States)</creatorcontrib><description>The STEP (Stability, Transport, Equilibrium, and Pedestal) integrated-modeling tool has been developed in OMFIT to predict stable, tokamak equilibria self-consistently with core-transport and pedestal calculations. STEP couples theory-based codes to integrate a variety of physics, including magnetohydrodynamic stability, transport, equilibrium, pedestal formation, and current-drive, heating, and fueling. The input/output of each code is interfaced with a centralized ITER-Integrated Modelling & Analysis Suite data structure, allowing codes to be run in any order and enabling open-loop, feedback, and optimization workflows. This paradigm simplifies the integration of new codes, making STEP highly extensible. STEP has been verified against a published benchmark of six different integrated models. Core-pedestal calculations with STEP have been successfully validated against individual DIII-D H-mode discharges and across more than 500 discharges of the
H
98
,
y
2 database, with a mean error in confinement time from experiment less than 19%. STEP has also reproduced results in less conventional DIII-D scenarios, including negative-central-shear and negative-triangularity plasmas. Predictive STEP modeling has been used to assess performance in several tokamak reactors. Simulations of a high-field, large-aspect-ratio reactor show significantly lower fusion power than predicted by a zero-dimensional study, demonstrating the limitations of scaling-law extrapolations. STEP predictions have found promising scenarios for an EXhaust and Confinement Integration Tokamak Experiment, including a high-pressure, 80%-bootstrap-fraction plasma. ITER modeling with STEP has shown that pellet fueling enhances fusion gain in both the baseline and advanced-inductive scenarios. Finally, STEP predictions for the SPARC baseline scenario are in good agreement with published results from the physics basis.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0156877</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Aspect ratio ; Codes ; Confinement ; Data structures ; Discharge ; Equilibrium ; Fusion energy ; Fusion experiments ; Fusion reactors ; Magnetic confinement fusion ; Magnetohydrodynamic stability ; Magnetohydrodynamics ; Modelling ; Nuclear power plants ; Optimization ; Physics ; Plasma confinement ; Plasma heating ; Plasma physics ; Tokamak devices ; Tokamaks</subject><ispartof>Physics of plasmas, 2023-09, Vol.30 (9)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-bd1ffbb319bf77fc26bba7133ad25525a1008628779ba6d1f8c7551b32e66ad03</citedby><cites>FETCH-LOGICAL-c354t-bd1ffbb319bf77fc26bba7133ad25525a1008628779ba6d1f8c7551b32e66ad03</cites><orcidid>0000-0003-1937-2675 ; 0000-0002-3268-7359 ; 0000-0002-1944-1733 ; 0000-0002-6838-2194 ; 0000-0003-4735-0991 ; 0000-0002-8763-3016 ; 0000-0001-5100-5483 ; 0000-0002-0099-6675 ; 0000-0002-4801-3922 ; 0000-0003-3974-8393 ; 0000-0001-7504-7645 ; 0000-0003-3232-1581 ; 0000-0001-7947-2841 ; 0000-0003-2432-4870 ; 0000-0003-1526-380X ; 0000-0003-3884-6485 ; 0000-0003-4510-0884 ; 0000-0002-0613-4232 ; 0000000200996675 ; 0000000332321581 ; 0000000206134232 ; 0000000339748393 ; 0000000219441733 ; 0000000319372675 ; 0000000345100884 ; 0000000268382194 ; 000000031526380X ; 0000000179472841 ; 0000000347350991 ; 0000000151005483 ; 0000000175047645 ; 0000000287633016 ; 0000000232687359 ; 0000000248013922 ; 0000000338846485 ; 0000000324324870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0156877$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1996416$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyons, B. C.</creatorcontrib><creatorcontrib>McClenaghan, J.</creatorcontrib><creatorcontrib>Slendebroek, T.</creatorcontrib><creatorcontrib>Meneghini, O.</creatorcontrib><creatorcontrib>Neiser, T. F.</creatorcontrib><creatorcontrib>Smith, S. P.</creatorcontrib><creatorcontrib>Weisberg, D. B.</creatorcontrib><creatorcontrib>Belli, E. A.</creatorcontrib><creatorcontrib>Candy, J.</creatorcontrib><creatorcontrib>Hanson, J. M.</creatorcontrib><creatorcontrib>Lao, L. L.</creatorcontrib><creatorcontrib>Logan, N. C.</creatorcontrib><creatorcontrib>Saarelma, S.</creatorcontrib><creatorcontrib>Sauter, O.</creatorcontrib><creatorcontrib>Snyder, P. B.</creatorcontrib><creatorcontrib>Staebler, G. M.</creatorcontrib><creatorcontrib>Thome, K. E.</creatorcontrib><creatorcontrib>Turnbull, A. D.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><title>Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics</title><title>Physics of plasmas</title><description>The STEP (Stability, Transport, Equilibrium, and Pedestal) integrated-modeling tool has been developed in OMFIT to predict stable, tokamak equilibria self-consistently with core-transport and pedestal calculations. STEP couples theory-based codes to integrate a variety of physics, including magnetohydrodynamic stability, transport, equilibrium, pedestal formation, and current-drive, heating, and fueling. The input/output of each code is interfaced with a centralized ITER-Integrated Modelling & Analysis Suite data structure, allowing codes to be run in any order and enabling open-loop, feedback, and optimization workflows. This paradigm simplifies the integration of new codes, making STEP highly extensible. STEP has been verified against a published benchmark of six different integrated models. Core-pedestal calculations with STEP have been successfully validated against individual DIII-D H-mode discharges and across more than 500 discharges of the
H
98
,
y
2 database, with a mean error in confinement time from experiment less than 19%. STEP has also reproduced results in less conventional DIII-D scenarios, including negative-central-shear and negative-triangularity plasmas. Predictive STEP modeling has been used to assess performance in several tokamak reactors. Simulations of a high-field, large-aspect-ratio reactor show significantly lower fusion power than predicted by a zero-dimensional study, demonstrating the limitations of scaling-law extrapolations. STEP predictions have found promising scenarios for an EXhaust and Confinement Integration Tokamak Experiment, including a high-pressure, 80%-bootstrap-fraction plasma. ITER modeling with STEP has shown that pellet fueling enhances fusion gain in both the baseline and advanced-inductive scenarios. Finally, STEP predictions for the SPARC baseline scenario are in good agreement with published results from the physics basis.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Aspect ratio</subject><subject>Codes</subject><subject>Confinement</subject><subject>Data structures</subject><subject>Discharge</subject><subject>Equilibrium</subject><subject>Fusion energy</subject><subject>Fusion experiments</subject><subject>Fusion reactors</subject><subject>Magnetic confinement fusion</subject><subject>Magnetohydrodynamic stability</subject><subject>Magnetohydrodynamics</subject><subject>Modelling</subject><subject>Nuclear power plants</subject><subject>Optimization</subject><subject>Physics</subject><subject>Plasma confinement</subject><subject>Plasma heating</subject><subject>Plasma physics</subject><subject>Tokamak devices</subject><subject>Tokamaks</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAUAPAiCs7pwW8Q9KS0M2mbpD3KcCoMvCh4i0mabtm6pEtScN_ejO7s6T0eP96_JLlFcIYgKZ7wDCJMKkrPkgmCVZ1RQsvzY05hRkj5fZlceb-BEJYEV5PkZ9GpXy06lQJtglo5HlQDdrZRnTYrYFsQ7Jbv-Bb4wIXudDikIDhufG9dSIHaD7EonB52KeCmAb1qVKQd6NcHr6W_Ti5a3nl1c4rT5Gvx8jl_y5Yfr-_z52UmC1yGTDSobYUoUC1aSluZEyE4RUXBmxzjHHMEYUXyeFgtOIm4khRjJIpcEcIbWEyTu7Gv9UEzL3VQci2tMUoGhuqalIhEdD-i3tn9EPdkGzs4E_dieUUIwrgmeVQPo5LOeu9Uy3qnd9wdGILs-GWG2enL0T6O9jiRB23NP_gPvet8jw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Lyons, B. C.</creator><creator>McClenaghan, J.</creator><creator>Slendebroek, T.</creator><creator>Meneghini, O.</creator><creator>Neiser, T. F.</creator><creator>Smith, S. P.</creator><creator>Weisberg, D. B.</creator><creator>Belli, E. A.</creator><creator>Candy, J.</creator><creator>Hanson, J. M.</creator><creator>Lao, L. L.</creator><creator>Logan, N. C.</creator><creator>Saarelma, S.</creator><creator>Sauter, O.</creator><creator>Snyder, P. B.</creator><creator>Staebler, G. M.</creator><creator>Thome, K. E.</creator><creator>Turnbull, A. D.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1937-2675</orcidid><orcidid>https://orcid.org/0000-0002-3268-7359</orcidid><orcidid>https://orcid.org/0000-0002-1944-1733</orcidid><orcidid>https://orcid.org/0000-0002-6838-2194</orcidid><orcidid>https://orcid.org/0000-0003-4735-0991</orcidid><orcidid>https://orcid.org/0000-0002-8763-3016</orcidid><orcidid>https://orcid.org/0000-0001-5100-5483</orcidid><orcidid>https://orcid.org/0000-0002-0099-6675</orcidid><orcidid>https://orcid.org/0000-0002-4801-3922</orcidid><orcidid>https://orcid.org/0000-0003-3974-8393</orcidid><orcidid>https://orcid.org/0000-0001-7504-7645</orcidid><orcidid>https://orcid.org/0000-0003-3232-1581</orcidid><orcidid>https://orcid.org/0000-0001-7947-2841</orcidid><orcidid>https://orcid.org/0000-0003-2432-4870</orcidid><orcidid>https://orcid.org/0000-0003-1526-380X</orcidid><orcidid>https://orcid.org/0000-0003-3884-6485</orcidid><orcidid>https://orcid.org/0000-0003-4510-0884</orcidid><orcidid>https://orcid.org/0000-0002-0613-4232</orcidid><orcidid>https://orcid.org/0000000200996675</orcidid><orcidid>https://orcid.org/0000000332321581</orcidid><orcidid>https://orcid.org/0000000206134232</orcidid><orcidid>https://orcid.org/0000000339748393</orcidid><orcidid>https://orcid.org/0000000219441733</orcidid><orcidid>https://orcid.org/0000000319372675</orcidid><orcidid>https://orcid.org/0000000345100884</orcidid><orcidid>https://orcid.org/0000000268382194</orcidid><orcidid>https://orcid.org/000000031526380X</orcidid><orcidid>https://orcid.org/0000000179472841</orcidid><orcidid>https://orcid.org/0000000347350991</orcidid><orcidid>https://orcid.org/0000000151005483</orcidid><orcidid>https://orcid.org/0000000175047645</orcidid><orcidid>https://orcid.org/0000000287633016</orcidid><orcidid>https://orcid.org/0000000232687359</orcidid><orcidid>https://orcid.org/0000000248013922</orcidid><orcidid>https://orcid.org/0000000338846485</orcidid><orcidid>https://orcid.org/0000000324324870</orcidid></search><sort><creationdate>20230901</creationdate><title>Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics</title><author>Lyons, B. C. ; McClenaghan, J. ; Slendebroek, T. ; Meneghini, O. ; Neiser, T. F. ; Smith, S. P. ; Weisberg, D. B. ; Belli, E. A. ; Candy, J. ; Hanson, J. M. ; Lao, L. L. ; Logan, N. C. ; Saarelma, S. ; Sauter, O. ; Snyder, P. B. ; Staebler, G. M. ; Thome, K. E. ; Turnbull, A. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-bd1ffbb319bf77fc26bba7133ad25525a1008628779ba6d1f8c7551b32e66ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Aspect ratio</topic><topic>Codes</topic><topic>Confinement</topic><topic>Data structures</topic><topic>Discharge</topic><topic>Equilibrium</topic><topic>Fusion energy</topic><topic>Fusion experiments</topic><topic>Fusion reactors</topic><topic>Magnetic confinement fusion</topic><topic>Magnetohydrodynamic stability</topic><topic>Magnetohydrodynamics</topic><topic>Modelling</topic><topic>Nuclear power plants</topic><topic>Optimization</topic><topic>Physics</topic><topic>Plasma confinement</topic><topic>Plasma heating</topic><topic>Plasma physics</topic><topic>Tokamak devices</topic><topic>Tokamaks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyons, B. C.</creatorcontrib><creatorcontrib>McClenaghan, J.</creatorcontrib><creatorcontrib>Slendebroek, T.</creatorcontrib><creatorcontrib>Meneghini, O.</creatorcontrib><creatorcontrib>Neiser, T. F.</creatorcontrib><creatorcontrib>Smith, S. P.</creatorcontrib><creatorcontrib>Weisberg, D. B.</creatorcontrib><creatorcontrib>Belli, E. A.</creatorcontrib><creatorcontrib>Candy, J.</creatorcontrib><creatorcontrib>Hanson, J. M.</creatorcontrib><creatorcontrib>Lao, L. L.</creatorcontrib><creatorcontrib>Logan, N. C.</creatorcontrib><creatorcontrib>Saarelma, S.</creatorcontrib><creatorcontrib>Sauter, O.</creatorcontrib><creatorcontrib>Snyder, P. B.</creatorcontrib><creatorcontrib>Staebler, G. M.</creatorcontrib><creatorcontrib>Thome, K. E.</creatorcontrib><creatorcontrib>Turnbull, A. D.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyons, B. C.</au><au>McClenaghan, J.</au><au>Slendebroek, T.</au><au>Meneghini, O.</au><au>Neiser, T. F.</au><au>Smith, S. P.</au><au>Weisberg, D. B.</au><au>Belli, E. A.</au><au>Candy, J.</au><au>Hanson, J. M.</au><au>Lao, L. L.</au><au>Logan, N. C.</au><au>Saarelma, S.</au><au>Sauter, O.</au><au>Snyder, P. B.</au><au>Staebler, G. M.</au><au>Thome, K. E.</au><au>Turnbull, A. D.</au><aucorp>General Atomics, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics</atitle><jtitle>Physics of plasmas</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>30</volume><issue>9</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The STEP (Stability, Transport, Equilibrium, and Pedestal) integrated-modeling tool has been developed in OMFIT to predict stable, tokamak equilibria self-consistently with core-transport and pedestal calculations. STEP couples theory-based codes to integrate a variety of physics, including magnetohydrodynamic stability, transport, equilibrium, pedestal formation, and current-drive, heating, and fueling. The input/output of each code is interfaced with a centralized ITER-Integrated Modelling & Analysis Suite data structure, allowing codes to be run in any order and enabling open-loop, feedback, and optimization workflows. This paradigm simplifies the integration of new codes, making STEP highly extensible. STEP has been verified against a published benchmark of six different integrated models. Core-pedestal calculations with STEP have been successfully validated against individual DIII-D H-mode discharges and across more than 500 discharges of the
H
98
,
y
2 database, with a mean error in confinement time from experiment less than 19%. STEP has also reproduced results in less conventional DIII-D scenarios, including negative-central-shear and negative-triangularity plasmas. Predictive STEP modeling has been used to assess performance in several tokamak reactors. Simulations of a high-field, large-aspect-ratio reactor show significantly lower fusion power than predicted by a zero-dimensional study, demonstrating the limitations of scaling-law extrapolations. STEP predictions have found promising scenarios for an EXhaust and Confinement Integration Tokamak Experiment, including a high-pressure, 80%-bootstrap-fraction plasma. ITER modeling with STEP has shown that pellet fueling enhances fusion gain in both the baseline and advanced-inductive scenarios. Finally, STEP predictions for the SPARC baseline scenario are in good agreement with published results from the physics basis.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0156877</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1937-2675</orcidid><orcidid>https://orcid.org/0000-0002-3268-7359</orcidid><orcidid>https://orcid.org/0000-0002-1944-1733</orcidid><orcidid>https://orcid.org/0000-0002-6838-2194</orcidid><orcidid>https://orcid.org/0000-0003-4735-0991</orcidid><orcidid>https://orcid.org/0000-0002-8763-3016</orcidid><orcidid>https://orcid.org/0000-0001-5100-5483</orcidid><orcidid>https://orcid.org/0000-0002-0099-6675</orcidid><orcidid>https://orcid.org/0000-0002-4801-3922</orcidid><orcidid>https://orcid.org/0000-0003-3974-8393</orcidid><orcidid>https://orcid.org/0000-0001-7504-7645</orcidid><orcidid>https://orcid.org/0000-0003-3232-1581</orcidid><orcidid>https://orcid.org/0000-0001-7947-2841</orcidid><orcidid>https://orcid.org/0000-0003-2432-4870</orcidid><orcidid>https://orcid.org/0000-0003-1526-380X</orcidid><orcidid>https://orcid.org/0000-0003-3884-6485</orcidid><orcidid>https://orcid.org/0000-0003-4510-0884</orcidid><orcidid>https://orcid.org/0000-0002-0613-4232</orcidid><orcidid>https://orcid.org/0000000200996675</orcidid><orcidid>https://orcid.org/0000000332321581</orcidid><orcidid>https://orcid.org/0000000206134232</orcidid><orcidid>https://orcid.org/0000000339748393</orcidid><orcidid>https://orcid.org/0000000219441733</orcidid><orcidid>https://orcid.org/0000000319372675</orcidid><orcidid>https://orcid.org/0000000345100884</orcidid><orcidid>https://orcid.org/0000000268382194</orcidid><orcidid>https://orcid.org/000000031526380X</orcidid><orcidid>https://orcid.org/0000000179472841</orcidid><orcidid>https://orcid.org/0000000347350991</orcidid><orcidid>https://orcid.org/0000000151005483</orcidid><orcidid>https://orcid.org/0000000175047645</orcidid><orcidid>https://orcid.org/0000000287633016</orcidid><orcidid>https://orcid.org/0000000232687359</orcidid><orcidid>https://orcid.org/0000000248013922</orcidid><orcidid>https://orcid.org/0000000338846485</orcidid><orcidid>https://orcid.org/0000000324324870</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2023-09, Vol.30 (9) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0156877 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Aspect ratio Codes Confinement Data structures Discharge Equilibrium Fusion energy Fusion experiments Fusion reactors Magnetic confinement fusion Magnetohydrodynamic stability Magnetohydrodynamics Modelling Nuclear power plants Optimization Physics Plasma confinement Plasma heating Plasma physics Tokamak devices Tokamaks |
title | Flexible, integrated modeling of tokamak stability, transport, equilibrium, and pedestal physics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible,%20integrated%20modeling%20of%20tokamak%20stability,%20transport,%20equilibrium,%20and%20pedestal%20physics&rft.jtitle=Physics%20of%20plasmas&rft.au=Lyons,%20B.%20C.&rft.aucorp=General%20Atomics,%20San%20Diego,%20CA%20(United%20States)&rft.date=2023-09-01&rft.volume=30&rft.issue=9&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0156877&rft_dat=%3Cproquest_cross%3E2866155962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866155962&rft_id=info:pmid/&rfr_iscdi=true |