Effect of the spin–orbit interaction in nanotubes
In this work, we study the electronic properties of nanotubes with spin–orbit interaction that exhibit a spin Hall effect. Nanoribbons made of these materials are expected to have topologically protected states. The lack of edge states in a seamless tube eliminates the possibility of finding a topol...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2023-07, Vol.134 (2) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 134 |
creator | Büsser, C. A. |
description | In this work, we study the electronic properties of nanotubes with spin–orbit interaction that exhibit a spin Hall effect. Nanoribbons made of these materials are expected to have topologically protected states. The lack of edge states in a seamless tube eliminates the possibility of finding a topological edge state. The spin–orbit interaction breaks the degeneracy of Dirac’s cones and eliminates the chance of finding a metal nanotube. As a consequence, this makes all nanotubes with spin–orbit interaction trivial band insulators. We focus our attention on two features. First, we study the energy band gap as a function of the diameter of the nanotubes. Then, we concentrate on controlling the bandgap of a nanotube by applying an external radial electric field. Finally, we discuss the possibility of using one of these tubes as a field-effect transistor. |
doi_str_mv | 10.1063/5.0156828 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0156828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835641811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7ebfa7af9184474ca1623284389556b4bcab81040dfb6c604657c33af453bf2b3</originalsourceid><addsrcrecordid>eNp90M9KAzEQBvAgCtbqwTdY8KSwdSb_9yilVaHgRc8hiQlu0U1N0oM338E39Enc0p49zRx-fMN8hFwizBAkuxUzQCE11UdkgqC7VgkBx2QCQLHVnepOyVkpawBEzboJYYsYg69Nik19C03Z9MPv90_Krq9NP9SQra99Gsa9GeyQ6taFck5Oon0v4eIwp-RluXieP7Srp_vH-d2q9Yyq2qrgolU2dqg5V9xblJRRzZnuhJCOO2-dRuDwGp30ErgUyjNmIxfMRerYlFztczc5fW5DqWadtnkYTxqqmZAcNeKorvfK51RKDtFscv9h85dBMLtOjDCHTkZ7s7fF99XuHvsH_wF-x2AT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835641811</pqid></control><display><type>article</type><title>Effect of the spin–orbit interaction in nanotubes</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Büsser, C. A.</creator><creatorcontrib>Büsser, C. A.</creatorcontrib><description>In this work, we study the electronic properties of nanotubes with spin–orbit interaction that exhibit a spin Hall effect. Nanoribbons made of these materials are expected to have topologically protected states. The lack of edge states in a seamless tube eliminates the possibility of finding a topological edge state. The spin–orbit interaction breaks the degeneracy of Dirac’s cones and eliminates the chance of finding a metal nanotube. As a consequence, this makes all nanotubes with spin–orbit interaction trivial band insulators. We focus our attention on two features. First, we study the energy band gap as a function of the diameter of the nanotubes. Then, we concentrate on controlling the bandgap of a nanotube by applying an external radial electric field. Finally, we discuss the possibility of using one of these tubes as a field-effect transistor.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0156828</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Electric fields ; Electron spin ; Energy bands ; Energy gap ; Field effect transistors ; Hall effect ; Insulators ; Nanoribbons ; Nanotubes ; Semiconductor devices ; Spin-orbit interactions</subject><ispartof>Journal of applied physics, 2023-07, Vol.134 (2)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7ebfa7af9184474ca1623284389556b4bcab81040dfb6c604657c33af453bf2b3</citedby><cites>FETCH-LOGICAL-c327t-7ebfa7af9184474ca1623284389556b4bcab81040dfb6c604657c33af453bf2b3</cites><orcidid>0000-0002-0353-7490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0156828$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Büsser, C. A.</creatorcontrib><title>Effect of the spin–orbit interaction in nanotubes</title><title>Journal of applied physics</title><description>In this work, we study the electronic properties of nanotubes with spin–orbit interaction that exhibit a spin Hall effect. Nanoribbons made of these materials are expected to have topologically protected states. The lack of edge states in a seamless tube eliminates the possibility of finding a topological edge state. The spin–orbit interaction breaks the degeneracy of Dirac’s cones and eliminates the chance of finding a metal nanotube. As a consequence, this makes all nanotubes with spin–orbit interaction trivial band insulators. We focus our attention on two features. First, we study the energy band gap as a function of the diameter of the nanotubes. Then, we concentrate on controlling the bandgap of a nanotube by applying an external radial electric field. Finally, we discuss the possibility of using one of these tubes as a field-effect transistor.</description><subject>Applied physics</subject><subject>Electric fields</subject><subject>Electron spin</subject><subject>Energy bands</subject><subject>Energy gap</subject><subject>Field effect transistors</subject><subject>Hall effect</subject><subject>Insulators</subject><subject>Nanoribbons</subject><subject>Nanotubes</subject><subject>Semiconductor devices</subject><subject>Spin-orbit interactions</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90M9KAzEQBvAgCtbqwTdY8KSwdSb_9yilVaHgRc8hiQlu0U1N0oM338E39Enc0p49zRx-fMN8hFwizBAkuxUzQCE11UdkgqC7VgkBx2QCQLHVnepOyVkpawBEzboJYYsYg69Nik19C03Z9MPv90_Krq9NP9SQra99Gsa9GeyQ6taFck5Oon0v4eIwp-RluXieP7Srp_vH-d2q9Yyq2qrgolU2dqg5V9xblJRRzZnuhJCOO2-dRuDwGp30ErgUyjNmIxfMRerYlFztczc5fW5DqWadtnkYTxqqmZAcNeKorvfK51RKDtFscv9h85dBMLtOjDCHTkZ7s7fF99XuHvsH_wF-x2AT</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>Büsser, C. A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0353-7490</orcidid></search><sort><creationdate>20230714</creationdate><title>Effect of the spin–orbit interaction in nanotubes</title><author>Büsser, C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7ebfa7af9184474ca1623284389556b4bcab81040dfb6c604657c33af453bf2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Electric fields</topic><topic>Electron spin</topic><topic>Energy bands</topic><topic>Energy gap</topic><topic>Field effect transistors</topic><topic>Hall effect</topic><topic>Insulators</topic><topic>Nanoribbons</topic><topic>Nanotubes</topic><topic>Semiconductor devices</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Büsser, C. A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Büsser, C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the spin–orbit interaction in nanotubes</atitle><jtitle>Journal of applied physics</jtitle><date>2023-07-14</date><risdate>2023</risdate><volume>134</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this work, we study the electronic properties of nanotubes with spin–orbit interaction that exhibit a spin Hall effect. Nanoribbons made of these materials are expected to have topologically protected states. The lack of edge states in a seamless tube eliminates the possibility of finding a topological edge state. The spin–orbit interaction breaks the degeneracy of Dirac’s cones and eliminates the chance of finding a metal nanotube. As a consequence, this makes all nanotubes with spin–orbit interaction trivial band insulators. We focus our attention on two features. First, we study the energy band gap as a function of the diameter of the nanotubes. Then, we concentrate on controlling the bandgap of a nanotube by applying an external radial electric field. Finally, we discuss the possibility of using one of these tubes as a field-effect transistor.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0156828</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0353-7490</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-07, Vol.134 (2) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0156828 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Electric fields Electron spin Energy bands Energy gap Field effect transistors Hall effect Insulators Nanoribbons Nanotubes Semiconductor devices Spin-orbit interactions |
title | Effect of the spin–orbit interaction in nanotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20spin%E2%80%93orbit%20interaction%20in%20nanotubes&rft.jtitle=Journal%20of%20applied%20physics&rft.au=B%C3%BCsser,%20C.%20A.&rft.date=2023-07-14&rft.volume=134&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0156828&rft_dat=%3Cproquest_cross%3E2835641811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835641811&rft_id=info:pmid/&rfr_iscdi=true |