On the Fourier asymptotics of absolutely continuous measures with power-law singularities
We prove sharp estimates on the time-average behavior of the squared absolute value of the Fourier transform of some absolutely continuous measures that may have power-law singularities, in the sense that their Radon–Nikodym derivatives diverge with a power-law order. We also discuss an application...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2024-01, Vol.65 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 65 |
creator | Aloisio, M. de Carvalho, S. L. de Oliveira, C. R. Souza, E. |
description | We prove sharp estimates on the time-average behavior of the squared absolute value of the Fourier transform of some absolutely continuous measures that may have power-law singularities, in the sense that their Radon–Nikodym derivatives diverge with a power-law order. We also discuss an application to spectral measures of finite-rank perturbations of the discrete Laplacian. |
doi_str_mv | 10.1063/5.0149320 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0149320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916193659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-76731407d7cc8f4e88c629518062cba4aa775c279b6789d1b6e845c73012c1493</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNclm83GUYlUo9KIHTyGbZm3KdrNmspT-e7e0Z09zeZiZ90XonpIZJaJ8rmaEcl0ycoEmlChdSFGpSzQhhLGCcaWu0Q3AlhBKFecT9L3qcN54vIhDCj5hC4ddn2MODnBssK0htkP27QG72OXQDXEAvPMWhuQB70Pe4D7ufSpau8cQup-htSnk4OEWXTW2BX93nlP0tXj9nL8Xy9Xbx_xlWTimZB7_kyXlRK6lc6rhXiknmK6oIoK52nJrpawck7oWUuk1rYVXvHKyJJS5Y9Qpejjt7VP8HTxksx2zdONJwzQVVJeiOqrHk3IpAiTfmD6FnU0HQ4k5Nmcqc25utE8nCy5km0Ps_sF_gMdtpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916193659</pqid></control><display><type>article</type><title>On the Fourier asymptotics of absolutely continuous measures with power-law singularities</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Aloisio, M. ; de Carvalho, S. L. ; de Oliveira, C. R. ; Souza, E.</creator><creatorcontrib>Aloisio, M. ; de Carvalho, S. L. ; de Oliveira, C. R. ; Souza, E.</creatorcontrib><description>We prove sharp estimates on the time-average behavior of the squared absolute value of the Fourier transform of some absolutely continuous measures that may have power-law singularities, in the sense that their Radon–Nikodym derivatives diverge with a power-law order. We also discuss an application to spectral measures of finite-rank perturbations of the discrete Laplacian.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0149320</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Fourier transforms ; Power law ; Singularities</subject><ispartof>Journal of mathematical physics, 2024-01, Vol.65 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-76731407d7cc8f4e88c629518062cba4aa775c279b6789d1b6e845c73012c1493</cites><orcidid>0000-0002-1926-8934 ; 0000-0003-2493-0627 ; 0000-0001-7749-5206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0149320$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Aloisio, M.</creatorcontrib><creatorcontrib>de Carvalho, S. L.</creatorcontrib><creatorcontrib>de Oliveira, C. R.</creatorcontrib><creatorcontrib>Souza, E.</creatorcontrib><title>On the Fourier asymptotics of absolutely continuous measures with power-law singularities</title><title>Journal of mathematical physics</title><description>We prove sharp estimates on the time-average behavior of the squared absolute value of the Fourier transform of some absolutely continuous measures that may have power-law singularities, in the sense that their Radon–Nikodym derivatives diverge with a power-law order. We also discuss an application to spectral measures of finite-rank perturbations of the discrete Laplacian.</description><subject>Fourier transforms</subject><subject>Power law</subject><subject>Singularities</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNclm83GUYlUo9KIHTyGbZm3KdrNmspT-e7e0Z09zeZiZ90XonpIZJaJ8rmaEcl0ycoEmlChdSFGpSzQhhLGCcaWu0Q3AlhBKFecT9L3qcN54vIhDCj5hC4ddn2MODnBssK0htkP27QG72OXQDXEAvPMWhuQB70Pe4D7ufSpau8cQup-htSnk4OEWXTW2BX93nlP0tXj9nL8Xy9Xbx_xlWTimZB7_kyXlRK6lc6rhXiknmK6oIoK52nJrpawck7oWUuk1rYVXvHKyJJS5Y9Qpejjt7VP8HTxksx2zdONJwzQVVJeiOqrHk3IpAiTfmD6FnU0HQ4k5Nmcqc25utE8nCy5km0Ps_sF_gMdtpw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Aloisio, M.</creator><creator>de Carvalho, S. L.</creator><creator>de Oliveira, C. R.</creator><creator>Souza, E.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1926-8934</orcidid><orcidid>https://orcid.org/0000-0003-2493-0627</orcidid><orcidid>https://orcid.org/0000-0001-7749-5206</orcidid></search><sort><creationdate>20240101</creationdate><title>On the Fourier asymptotics of absolutely continuous measures with power-law singularities</title><author>Aloisio, M. ; de Carvalho, S. L. ; de Oliveira, C. R. ; Souza, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-76731407d7cc8f4e88c629518062cba4aa775c279b6789d1b6e845c73012c1493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fourier transforms</topic><topic>Power law</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aloisio, M.</creatorcontrib><creatorcontrib>de Carvalho, S. L.</creatorcontrib><creatorcontrib>de Oliveira, C. R.</creatorcontrib><creatorcontrib>Souza, E.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aloisio, M.</au><au>de Carvalho, S. L.</au><au>de Oliveira, C. R.</au><au>Souza, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Fourier asymptotics of absolutely continuous measures with power-law singularities</atitle><jtitle>Journal of mathematical physics</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>65</volume><issue>1</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We prove sharp estimates on the time-average behavior of the squared absolute value of the Fourier transform of some absolutely continuous measures that may have power-law singularities, in the sense that their Radon–Nikodym derivatives diverge with a power-law order. We also discuss an application to spectral measures of finite-rank perturbations of the discrete Laplacian.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0149320</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1926-8934</orcidid><orcidid>https://orcid.org/0000-0003-2493-0627</orcidid><orcidid>https://orcid.org/0000-0001-7749-5206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2024-01, Vol.65 (1) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0149320 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Fourier transforms Power law Singularities |
title | On the Fourier asymptotics of absolutely continuous measures with power-law singularities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Fourier%20asymptotics%20of%20absolutely%20continuous%20measures%20with%20power-law%20singularities&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Aloisio,%20M.&rft.date=2024-01-01&rft.volume=65&rft.issue=1&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0149320&rft_dat=%3Cproquest_cross%3E2916193659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916193659&rft_id=info:pmid/&rfr_iscdi=true |