Combination of 3D current collectors and in situ polymerized electrolytes enabling high-mass-loading cathodes for solid-state lithium batteries

Solid-state lithium batteries (SSLBs) are promising energy storage devices in the future due to their high theoretical energy density and enhanced safety. However, the practical energy density of SSLBs is severely constrained by the limited mass loading of cathode materials, which is related to slug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-05, Vol.122 (21)
Hauptverfasser: Sun, Qifu, Tufail, Muhammad Khurram, Li, Wenkai, Zhao, Ning, Bi, Zhijie, Guo, Xiangxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solid-state lithium batteries (SSLBs) are promising energy storage devices in the future due to their high theoretical energy density and enhanced safety. However, the practical energy density of SSLBs is severely constrained by the limited mass loading of cathode materials, which is related to sluggish charge transfer inside the thick cathodes. In this work, the solid-state batteries with high-mass-loading cathodes are realized by introduction of three-dimensional (3D) electronic-conductivity current collectors and in situ solidification of polymer electrolytes. The porous electronic current collectors of 3D carbon felts accommodate the flowing cathode slurry with considerably increased loading of cathode materials. Subsequently, the in situ solidified polymer electrolytes ensure conformal ionic conducting channels inside the cathodes, along with the formation of intimate and flexible contacts at cathode/electrolyte interfaces. In this way, the solid-state LiFePO4/garnet/Li batteries with cathode loading of 6.2 mg cm−2 show an initial discharge capacity of 159.4 mAh g−1 and a capacity retention of 92.1% after 100 cycles at 30 °C and 0.1 C. Furthermore, the cathode mass loading as high as 27.8 mg cm−2 is achieved with a corresponding areal capacity of approximately 4.2 mAh cm−2. This work proposes a promising unique cathode architecture for solid-state lithium batteries with high mass loading of the cathode.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0147529