Exploring the water capture efficiency of covalently attached liquid-like surfaces

The capture of moisture from the atmosphere through condensation has the potential to provide a sustainable source of water. Here, we investigate the condensation of humid air at low subcooling condition (11 °C), similar to conditions for natural dew capture, and explore how water contact angle and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-06, Vol.158 (21)
Hauptverfasser: Katselas, Anthony, Gresham, Isaac J., Nelson, Andrew R. J., Neto, Chiara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title The Journal of chemical physics
container_volume 158
creator Katselas, Anthony
Gresham, Isaac J.
Nelson, Andrew R. J.
Neto, Chiara
description The capture of moisture from the atmosphere through condensation has the potential to provide a sustainable source of water. Here, we investigate the condensation of humid air at low subcooling condition (11 °C), similar to conditions for natural dew capture, and explore how water contact angle and contact angle hysteresis affect the rates of water capture. We compare water collection on three families of surfaces: (i) hydrophilic (polyethylene oxide, MPEO) and hydrophobic (polydimethylsiloxane, PDMS) molecularly thin coatings grafted on smooth silicon wafers, which produce slippery covalently attached liquid surfaces (SCALSs), with low contact angle hysteresis (CAH = 6°); (ii) the same coatings grafted on rougher glass, with high CAH (20°–25°); (iii) hydrophilic polymer surfaces [poly(N-vinylpyrrolidone), PNVP] with high CAH (30°). Upon exposure to water, the MPEO SCALS swell, which likely further increases their droplet shedding ability. MPEO and PDMS coatings collect similar volume of water (around 5 l m−2 day−1), both when they are SCALS and non-slippery. Both MPEO and PDMS layers collect about 20% more water than PNVP surfaces. We present a basic model showing that, under low heat flux conditions, on all MPEO and PDMS layers, the droplets are so small (600–2000 µm) that there is no/low heat conduction resistance across the droplets, irrespective of the exact value of contact angle and CAH. As the time to first droplet departure is much faster on MPEO SCALS (28 min) than on PDMS SCALS (90 min), slippery hydrophilic surfaces are preferable in dew collection applications where the collection time frame is limited.
doi_str_mv 10.1063/5.0146847
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0146847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822852071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-64558473ef1ec6dec59f58f589c05c016a3871400865b14ee152f9d5c37a68243</originalsourceid><addsrcrecordid>eNp90F1LHTEQBuAgFT3VXvQPlEBvrLA6STYfeymirSAI0l4vMTupsXs2a5JVz7935ZxaUCgMzM3DO8NLyGcGRwyUOJZHwGplar1FFgxMU2nVwAeyAOCsahSoXfIx5zsAYJrXO2RXaK5nrhbk-uxp7GMKw29abpE-2oKJOjuWKSFF74MLOLgVjZ66-GB7HEq_orYU626xo324n0JX9eEP0jwlbx3mfbLtbZ_x02bvkV_nZz9Pf1SXV98vTk8uKyeMKJWqpZx_EOgZOtWhk42XZp7GgXTAlBVGsxrAKHnDakQmuW866YS2yvBa7JGDde6Y4v2EubTLkB32vR0wTrnlhguoQYOe6dc39C5OaZi_e1HcSA6azerbWrkUc07o2zGFpU2rlkH7UnQr203Rs_2ySZxulti9yr_NzuBwDbILxZYQh1fzENO_pHbs_P_w-9PP9bCSxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822852071</pqid></control><display><type>article</type><title>Exploring the water capture efficiency of covalently attached liquid-like surfaces</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Katselas, Anthony ; Gresham, Isaac J. ; Nelson, Andrew R. J. ; Neto, Chiara</creator><creatorcontrib>Katselas, Anthony ; Gresham, Isaac J. ; Nelson, Andrew R. J. ; Neto, Chiara</creatorcontrib><description>The capture of moisture from the atmosphere through condensation has the potential to provide a sustainable source of water. Here, we investigate the condensation of humid air at low subcooling condition (11 °C), similar to conditions for natural dew capture, and explore how water contact angle and contact angle hysteresis affect the rates of water capture. We compare water collection on three families of surfaces: (i) hydrophilic (polyethylene oxide, MPEO) and hydrophobic (polydimethylsiloxane, PDMS) molecularly thin coatings grafted on smooth silicon wafers, which produce slippery covalently attached liquid surfaces (SCALSs), with low contact angle hysteresis (CAH = 6°); (ii) the same coatings grafted on rougher glass, with high CAH (20°–25°); (iii) hydrophilic polymer surfaces [poly(N-vinylpyrrolidone), PNVP] with high CAH (30°). Upon exposure to water, the MPEO SCALS swell, which likely further increases their droplet shedding ability. MPEO and PDMS coatings collect similar volume of water (around 5 l m−2 day−1), both when they are SCALS and non-slippery. Both MPEO and PDMS layers collect about 20% more water than PNVP surfaces. We present a basic model showing that, under low heat flux conditions, on all MPEO and PDMS layers, the droplets are so small (600–2000 µm) that there is no/low heat conduction resistance across the droplets, irrespective of the exact value of contact angle and CAH. As the time to first droplet departure is much faster on MPEO SCALS (28 min) than on PDMS SCALS (90 min), slippery hydrophilic surfaces are preferable in dew collection applications where the collection time frame is limited.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0146847</identifier><identifier>PMID: 37278476</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coatings ; Collection ; Condensation ; Conduction heating ; Conductive heat transfer ; Contact angle ; Dew ; Droplets ; Heat flux ; Hydrophilicity ; Hysteresis ; Liquid surfaces ; Moisture effects ; Physics ; Polydimethylsiloxane ; Polyethylene oxide ; Polyvinylpyrrolidone ; Silicon wafers</subject><ispartof>The Journal of chemical physics, 2023-06, Vol.158 (21)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-64558473ef1ec6dec59f58f589c05c016a3871400865b14ee152f9d5c37a68243</citedby><cites>FETCH-LOGICAL-c383t-64558473ef1ec6dec59f58f589c05c016a3871400865b14ee152f9d5c37a68243</cites><orcidid>0000-0002-4548-3558 ; 0000-0003-0583-1367 ; 0000-0002-5648-3756 ; 0000-0001-6058-0885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0146847$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76256</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37278476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katselas, Anthony</creatorcontrib><creatorcontrib>Gresham, Isaac J.</creatorcontrib><creatorcontrib>Nelson, Andrew R. J.</creatorcontrib><creatorcontrib>Neto, Chiara</creatorcontrib><title>Exploring the water capture efficiency of covalently attached liquid-like surfaces</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The capture of moisture from the atmosphere through condensation has the potential to provide a sustainable source of water. Here, we investigate the condensation of humid air at low subcooling condition (11 °C), similar to conditions for natural dew capture, and explore how water contact angle and contact angle hysteresis affect the rates of water capture. We compare water collection on three families of surfaces: (i) hydrophilic (polyethylene oxide, MPEO) and hydrophobic (polydimethylsiloxane, PDMS) molecularly thin coatings grafted on smooth silicon wafers, which produce slippery covalently attached liquid surfaces (SCALSs), with low contact angle hysteresis (CAH = 6°); (ii) the same coatings grafted on rougher glass, with high CAH (20°–25°); (iii) hydrophilic polymer surfaces [poly(N-vinylpyrrolidone), PNVP] with high CAH (30°). Upon exposure to water, the MPEO SCALS swell, which likely further increases their droplet shedding ability. MPEO and PDMS coatings collect similar volume of water (around 5 l m−2 day−1), both when they are SCALS and non-slippery. Both MPEO and PDMS layers collect about 20% more water than PNVP surfaces. We present a basic model showing that, under low heat flux conditions, on all MPEO and PDMS layers, the droplets are so small (600–2000 µm) that there is no/low heat conduction resistance across the droplets, irrespective of the exact value of contact angle and CAH. As the time to first droplet departure is much faster on MPEO SCALS (28 min) than on PDMS SCALS (90 min), slippery hydrophilic surfaces are preferable in dew collection applications where the collection time frame is limited.</description><subject>Coatings</subject><subject>Collection</subject><subject>Condensation</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Contact angle</subject><subject>Dew</subject><subject>Droplets</subject><subject>Heat flux</subject><subject>Hydrophilicity</subject><subject>Hysteresis</subject><subject>Liquid surfaces</subject><subject>Moisture effects</subject><subject>Physics</subject><subject>Polydimethylsiloxane</subject><subject>Polyethylene oxide</subject><subject>Polyvinylpyrrolidone</subject><subject>Silicon wafers</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90F1LHTEQBuAgFT3VXvQPlEBvrLA6STYfeymirSAI0l4vMTupsXs2a5JVz7935ZxaUCgMzM3DO8NLyGcGRwyUOJZHwGplar1FFgxMU2nVwAeyAOCsahSoXfIx5zsAYJrXO2RXaK5nrhbk-uxp7GMKw29abpE-2oKJOjuWKSFF74MLOLgVjZ66-GB7HEq_orYU626xo324n0JX9eEP0jwlbx3mfbLtbZ_x02bvkV_nZz9Pf1SXV98vTk8uKyeMKJWqpZx_EOgZOtWhk42XZp7GgXTAlBVGsxrAKHnDakQmuW866YS2yvBa7JGDde6Y4v2EubTLkB32vR0wTrnlhguoQYOe6dc39C5OaZi_e1HcSA6azerbWrkUc07o2zGFpU2rlkH7UnQr203Rs_2ySZxulti9yr_NzuBwDbILxZYQh1fzENO_pHbs_P_w-9PP9bCSxQ</recordid><startdate>20230607</startdate><enddate>20230607</enddate><creator>Katselas, Anthony</creator><creator>Gresham, Isaac J.</creator><creator>Nelson, Andrew R. J.</creator><creator>Neto, Chiara</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4548-3558</orcidid><orcidid>https://orcid.org/0000-0003-0583-1367</orcidid><orcidid>https://orcid.org/0000-0002-5648-3756</orcidid><orcidid>https://orcid.org/0000-0001-6058-0885</orcidid></search><sort><creationdate>20230607</creationdate><title>Exploring the water capture efficiency of covalently attached liquid-like surfaces</title><author>Katselas, Anthony ; Gresham, Isaac J. ; Nelson, Andrew R. J. ; Neto, Chiara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-64558473ef1ec6dec59f58f589c05c016a3871400865b14ee152f9d5c37a68243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coatings</topic><topic>Collection</topic><topic>Condensation</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Contact angle</topic><topic>Dew</topic><topic>Droplets</topic><topic>Heat flux</topic><topic>Hydrophilicity</topic><topic>Hysteresis</topic><topic>Liquid surfaces</topic><topic>Moisture effects</topic><topic>Physics</topic><topic>Polydimethylsiloxane</topic><topic>Polyethylene oxide</topic><topic>Polyvinylpyrrolidone</topic><topic>Silicon wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katselas, Anthony</creatorcontrib><creatorcontrib>Gresham, Isaac J.</creatorcontrib><creatorcontrib>Nelson, Andrew R. J.</creatorcontrib><creatorcontrib>Neto, Chiara</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katselas, Anthony</au><au>Gresham, Isaac J.</au><au>Nelson, Andrew R. J.</au><au>Neto, Chiara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the water capture efficiency of covalently attached liquid-like surfaces</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-06-07</date><risdate>2023</risdate><volume>158</volume><issue>21</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The capture of moisture from the atmosphere through condensation has the potential to provide a sustainable source of water. Here, we investigate the condensation of humid air at low subcooling condition (11 °C), similar to conditions for natural dew capture, and explore how water contact angle and contact angle hysteresis affect the rates of water capture. We compare water collection on three families of surfaces: (i) hydrophilic (polyethylene oxide, MPEO) and hydrophobic (polydimethylsiloxane, PDMS) molecularly thin coatings grafted on smooth silicon wafers, which produce slippery covalently attached liquid surfaces (SCALSs), with low contact angle hysteresis (CAH = 6°); (ii) the same coatings grafted on rougher glass, with high CAH (20°–25°); (iii) hydrophilic polymer surfaces [poly(N-vinylpyrrolidone), PNVP] with high CAH (30°). Upon exposure to water, the MPEO SCALS swell, which likely further increases their droplet shedding ability. MPEO and PDMS coatings collect similar volume of water (around 5 l m−2 day−1), both when they are SCALS and non-slippery. Both MPEO and PDMS layers collect about 20% more water than PNVP surfaces. We present a basic model showing that, under low heat flux conditions, on all MPEO and PDMS layers, the droplets are so small (600–2000 µm) that there is no/low heat conduction resistance across the droplets, irrespective of the exact value of contact angle and CAH. As the time to first droplet departure is much faster on MPEO SCALS (28 min) than on PDMS SCALS (90 min), slippery hydrophilic surfaces are preferable in dew collection applications where the collection time frame is limited.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37278476</pmid><doi>10.1063/5.0146847</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4548-3558</orcidid><orcidid>https://orcid.org/0000-0003-0583-1367</orcidid><orcidid>https://orcid.org/0000-0002-5648-3756</orcidid><orcidid>https://orcid.org/0000-0001-6058-0885</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-06, Vol.158 (21)
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0146847
source AIP Journals Complete; Alma/SFX Local Collection
subjects Coatings
Collection
Condensation
Conduction heating
Conductive heat transfer
Contact angle
Dew
Droplets
Heat flux
Hydrophilicity
Hysteresis
Liquid surfaces
Moisture effects
Physics
Polydimethylsiloxane
Polyethylene oxide
Polyvinylpyrrolidone
Silicon wafers
title Exploring the water capture efficiency of covalently attached liquid-like surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20water%20capture%20efficiency%20of%20covalently%20attached%20liquid-like%20surfaces&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Katselas,%20Anthony&rft.date=2023-06-07&rft.volume=158&rft.issue=21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0146847&rft_dat=%3Cproquest_cross%3E2822852071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822852071&rft_id=info:pmid/37278476&rfr_iscdi=true