Exploring the water capture efficiency of covalently attached liquid-like surfaces
The capture of moisture from the atmosphere through condensation has the potential to provide a sustainable source of water. Here, we investigate the condensation of humid air at low subcooling condition (11 °C), similar to conditions for natural dew capture, and explore how water contact angle and...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-06, Vol.158 (21) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 158 |
creator | Katselas, Anthony Gresham, Isaac J. Nelson, Andrew R. J. Neto, Chiara |
description | The capture of moisture from the atmosphere through condensation has the potential to provide a sustainable source of water. Here, we investigate the condensation of humid air at low subcooling condition (11 °C), similar to conditions for natural dew capture, and explore how water contact angle and contact angle hysteresis affect the rates of water capture. We compare water collection on three families of surfaces: (i) hydrophilic (polyethylene oxide, MPEO) and hydrophobic (polydimethylsiloxane, PDMS) molecularly thin coatings grafted on smooth silicon wafers, which produce slippery covalently attached liquid surfaces (SCALSs), with low contact angle hysteresis (CAH = 6°); (ii) the same coatings grafted on rougher glass, with high CAH (20°–25°); (iii) hydrophilic polymer surfaces [poly(N-vinylpyrrolidone), PNVP] with high CAH (30°). Upon exposure to water, the MPEO SCALS swell, which likely further increases their droplet shedding ability. MPEO and PDMS coatings collect similar volume of water (around 5 l m−2 day−1), both when they are SCALS and non-slippery. Both MPEO and PDMS layers collect about 20% more water than PNVP surfaces. We present a basic model showing that, under low heat flux conditions, on all MPEO and PDMS layers, the droplets are so small (600–2000 µm) that there is no/low heat conduction resistance across the droplets, irrespective of the exact value of contact angle and CAH. As the time to first droplet departure is much faster on MPEO SCALS (28 min) than on PDMS SCALS (90 min), slippery hydrophilic surfaces are preferable in dew collection applications where the collection time frame is limited. |
doi_str_mv | 10.1063/5.0146847 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0146847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822852071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-64558473ef1ec6dec59f58f589c05c016a3871400865b14ee152f9d5c37a68243</originalsourceid><addsrcrecordid>eNp90F1LHTEQBuAgFT3VXvQPlEBvrLA6STYfeymirSAI0l4vMTupsXs2a5JVz7935ZxaUCgMzM3DO8NLyGcGRwyUOJZHwGplar1FFgxMU2nVwAeyAOCsahSoXfIx5zsAYJrXO2RXaK5nrhbk-uxp7GMKw29abpE-2oKJOjuWKSFF74MLOLgVjZ66-GB7HEq_orYU626xo324n0JX9eEP0jwlbx3mfbLtbZ_x02bvkV_nZz9Pf1SXV98vTk8uKyeMKJWqpZx_EOgZOtWhk42XZp7GgXTAlBVGsxrAKHnDakQmuW866YS2yvBa7JGDde6Y4v2EubTLkB32vR0wTrnlhguoQYOe6dc39C5OaZi_e1HcSA6azerbWrkUc07o2zGFpU2rlkH7UnQr203Rs_2ySZxulti9yr_NzuBwDbILxZYQh1fzENO_pHbs_P_w-9PP9bCSxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822852071</pqid></control><display><type>article</type><title>Exploring the water capture efficiency of covalently attached liquid-like surfaces</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Katselas, Anthony ; Gresham, Isaac J. ; Nelson, Andrew R. J. ; Neto, Chiara</creator><creatorcontrib>Katselas, Anthony ; Gresham, Isaac J. ; Nelson, Andrew R. J. ; Neto, Chiara</creatorcontrib><description>The capture of moisture from the atmosphere through condensation has the potential to provide a sustainable source of water. Here, we investigate the condensation of humid air at low subcooling condition (11 °C), similar to conditions for natural dew capture, and explore how water contact angle and contact angle hysteresis affect the rates of water capture. We compare water collection on three families of surfaces: (i) hydrophilic (polyethylene oxide, MPEO) and hydrophobic (polydimethylsiloxane, PDMS) molecularly thin coatings grafted on smooth silicon wafers, which produce slippery covalently attached liquid surfaces (SCALSs), with low contact angle hysteresis (CAH = 6°); (ii) the same coatings grafted on rougher glass, with high CAH (20°–25°); (iii) hydrophilic polymer surfaces [poly(N-vinylpyrrolidone), PNVP] with high CAH (30°). Upon exposure to water, the MPEO SCALS swell, which likely further increases their droplet shedding ability. MPEO and PDMS coatings collect similar volume of water (around 5 l m−2 day−1), both when they are SCALS and non-slippery. Both MPEO and PDMS layers collect about 20% more water than PNVP surfaces. We present a basic model showing that, under low heat flux conditions, on all MPEO and PDMS layers, the droplets are so small (600–2000 µm) that there is no/low heat conduction resistance across the droplets, irrespective of the exact value of contact angle and CAH. As the time to first droplet departure is much faster on MPEO SCALS (28 min) than on PDMS SCALS (90 min), slippery hydrophilic surfaces are preferable in dew collection applications where the collection time frame is limited.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0146847</identifier><identifier>PMID: 37278476</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coatings ; Collection ; Condensation ; Conduction heating ; Conductive heat transfer ; Contact angle ; Dew ; Droplets ; Heat flux ; Hydrophilicity ; Hysteresis ; Liquid surfaces ; Moisture effects ; Physics ; Polydimethylsiloxane ; Polyethylene oxide ; Polyvinylpyrrolidone ; Silicon wafers</subject><ispartof>The Journal of chemical physics, 2023-06, Vol.158 (21)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-64558473ef1ec6dec59f58f589c05c016a3871400865b14ee152f9d5c37a68243</citedby><cites>FETCH-LOGICAL-c383t-64558473ef1ec6dec59f58f589c05c016a3871400865b14ee152f9d5c37a68243</cites><orcidid>0000-0002-4548-3558 ; 0000-0003-0583-1367 ; 0000-0002-5648-3756 ; 0000-0001-6058-0885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0146847$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76256</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37278476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katselas, Anthony</creatorcontrib><creatorcontrib>Gresham, Isaac J.</creatorcontrib><creatorcontrib>Nelson, Andrew R. J.</creatorcontrib><creatorcontrib>Neto, Chiara</creatorcontrib><title>Exploring the water capture efficiency of covalently attached liquid-like surfaces</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The capture of moisture from the atmosphere through condensation has the potential to provide a sustainable source of water. Here, we investigate the condensation of humid air at low subcooling condition (11 °C), similar to conditions for natural dew capture, and explore how water contact angle and contact angle hysteresis affect the rates of water capture. We compare water collection on three families of surfaces: (i) hydrophilic (polyethylene oxide, MPEO) and hydrophobic (polydimethylsiloxane, PDMS) molecularly thin coatings grafted on smooth silicon wafers, which produce slippery covalently attached liquid surfaces (SCALSs), with low contact angle hysteresis (CAH = 6°); (ii) the same coatings grafted on rougher glass, with high CAH (20°–25°); (iii) hydrophilic polymer surfaces [poly(N-vinylpyrrolidone), PNVP] with high CAH (30°). Upon exposure to water, the MPEO SCALS swell, which likely further increases their droplet shedding ability. MPEO and PDMS coatings collect similar volume of water (around 5 l m−2 day−1), both when they are SCALS and non-slippery. Both MPEO and PDMS layers collect about 20% more water than PNVP surfaces. We present a basic model showing that, under low heat flux conditions, on all MPEO and PDMS layers, the droplets are so small (600–2000 µm) that there is no/low heat conduction resistance across the droplets, irrespective of the exact value of contact angle and CAH. As the time to first droplet departure is much faster on MPEO SCALS (28 min) than on PDMS SCALS (90 min), slippery hydrophilic surfaces are preferable in dew collection applications where the collection time frame is limited.</description><subject>Coatings</subject><subject>Collection</subject><subject>Condensation</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Contact angle</subject><subject>Dew</subject><subject>Droplets</subject><subject>Heat flux</subject><subject>Hydrophilicity</subject><subject>Hysteresis</subject><subject>Liquid surfaces</subject><subject>Moisture effects</subject><subject>Physics</subject><subject>Polydimethylsiloxane</subject><subject>Polyethylene oxide</subject><subject>Polyvinylpyrrolidone</subject><subject>Silicon wafers</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90F1LHTEQBuAgFT3VXvQPlEBvrLA6STYfeymirSAI0l4vMTupsXs2a5JVz7935ZxaUCgMzM3DO8NLyGcGRwyUOJZHwGplar1FFgxMU2nVwAeyAOCsahSoXfIx5zsAYJrXO2RXaK5nrhbk-uxp7GMKw29abpE-2oKJOjuWKSFF74MLOLgVjZ66-GB7HEq_orYU626xo324n0JX9eEP0jwlbx3mfbLtbZ_x02bvkV_nZz9Pf1SXV98vTk8uKyeMKJWqpZx_EOgZOtWhk42XZp7GgXTAlBVGsxrAKHnDakQmuW866YS2yvBa7JGDde6Y4v2EubTLkB32vR0wTrnlhguoQYOe6dc39C5OaZi_e1HcSA6azerbWrkUc07o2zGFpU2rlkH7UnQr203Rs_2ySZxulti9yr_NzuBwDbILxZYQh1fzENO_pHbs_P_w-9PP9bCSxQ</recordid><startdate>20230607</startdate><enddate>20230607</enddate><creator>Katselas, Anthony</creator><creator>Gresham, Isaac J.</creator><creator>Nelson, Andrew R. J.</creator><creator>Neto, Chiara</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4548-3558</orcidid><orcidid>https://orcid.org/0000-0003-0583-1367</orcidid><orcidid>https://orcid.org/0000-0002-5648-3756</orcidid><orcidid>https://orcid.org/0000-0001-6058-0885</orcidid></search><sort><creationdate>20230607</creationdate><title>Exploring the water capture efficiency of covalently attached liquid-like surfaces</title><author>Katselas, Anthony ; Gresham, Isaac J. ; Nelson, Andrew R. J. ; Neto, Chiara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-64558473ef1ec6dec59f58f589c05c016a3871400865b14ee152f9d5c37a68243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coatings</topic><topic>Collection</topic><topic>Condensation</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Contact angle</topic><topic>Dew</topic><topic>Droplets</topic><topic>Heat flux</topic><topic>Hydrophilicity</topic><topic>Hysteresis</topic><topic>Liquid surfaces</topic><topic>Moisture effects</topic><topic>Physics</topic><topic>Polydimethylsiloxane</topic><topic>Polyethylene oxide</topic><topic>Polyvinylpyrrolidone</topic><topic>Silicon wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katselas, Anthony</creatorcontrib><creatorcontrib>Gresham, Isaac J.</creatorcontrib><creatorcontrib>Nelson, Andrew R. J.</creatorcontrib><creatorcontrib>Neto, Chiara</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katselas, Anthony</au><au>Gresham, Isaac J.</au><au>Nelson, Andrew R. J.</au><au>Neto, Chiara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the water capture efficiency of covalently attached liquid-like surfaces</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-06-07</date><risdate>2023</risdate><volume>158</volume><issue>21</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The capture of moisture from the atmosphere through condensation has the potential to provide a sustainable source of water. Here, we investigate the condensation of humid air at low subcooling condition (11 °C), similar to conditions for natural dew capture, and explore how water contact angle and contact angle hysteresis affect the rates of water capture. We compare water collection on three families of surfaces: (i) hydrophilic (polyethylene oxide, MPEO) and hydrophobic (polydimethylsiloxane, PDMS) molecularly thin coatings grafted on smooth silicon wafers, which produce slippery covalently attached liquid surfaces (SCALSs), with low contact angle hysteresis (CAH = 6°); (ii) the same coatings grafted on rougher glass, with high CAH (20°–25°); (iii) hydrophilic polymer surfaces [poly(N-vinylpyrrolidone), PNVP] with high CAH (30°). Upon exposure to water, the MPEO SCALS swell, which likely further increases their droplet shedding ability. MPEO and PDMS coatings collect similar volume of water (around 5 l m−2 day−1), both when they are SCALS and non-slippery. Both MPEO and PDMS layers collect about 20% more water than PNVP surfaces. We present a basic model showing that, under low heat flux conditions, on all MPEO and PDMS layers, the droplets are so small (600–2000 µm) that there is no/low heat conduction resistance across the droplets, irrespective of the exact value of contact angle and CAH. As the time to first droplet departure is much faster on MPEO SCALS (28 min) than on PDMS SCALS (90 min), slippery hydrophilic surfaces are preferable in dew collection applications where the collection time frame is limited.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37278476</pmid><doi>10.1063/5.0146847</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4548-3558</orcidid><orcidid>https://orcid.org/0000-0003-0583-1367</orcidid><orcidid>https://orcid.org/0000-0002-5648-3756</orcidid><orcidid>https://orcid.org/0000-0001-6058-0885</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-06, Vol.158 (21) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0146847 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Coatings Collection Condensation Conduction heating Conductive heat transfer Contact angle Dew Droplets Heat flux Hydrophilicity Hysteresis Liquid surfaces Moisture effects Physics Polydimethylsiloxane Polyethylene oxide Polyvinylpyrrolidone Silicon wafers |
title | Exploring the water capture efficiency of covalently attached liquid-like surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20water%20capture%20efficiency%20of%20covalently%20attached%20liquid-like%20surfaces&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Katselas,%20Anthony&rft.date=2023-06-07&rft.volume=158&rft.issue=21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0146847&rft_dat=%3Cproquest_cross%3E2822852071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822852071&rft_id=info:pmid/37278476&rfr_iscdi=true |