InP quantum dots: Stoichiometry regulates carrier dynamics
The optical properties of non-toxic indium phosphide (InP) quantum dots (QDs) are impinged by the existence of characteristic deep trap states. Several surface engineering strategies have been adopted to improve their optical quality, which has promoted the use of InP QDs for various technological a...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-05, Vol.158 (17) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 158 |
creator | Manoj, B. Rajan, Devika Thomas, K. George |
description | The optical properties of non-toxic indium phosphide (InP) quantum dots (QDs) are impinged by the existence of characteristic deep trap states. Several surface engineering strategies have been adopted to improve their optical quality, which has promoted the use of InP QDs for various technological applications. An antithetical approach involves the effective utilization of the deep trap states in InP QDs to modulate back electron transfer rates. Here, we explore the influence of the core-size of InP on their In-to-P stoichiometry and charge transfer dynamics when bound to an acceptor molecule, decyl viologen (DV2+). The mechanism of interaction of InP and DV2+ based on the quenching sphere model established the presence of (i) a 1:1 complex of DV2+ bound on InP and (ii) immobile quenchers in the quenching sphere, depending on the concentration of DV2+. While the forward electron transfer rates from photoexcited InP to bound DV2+ does not substantially vary with an increase in core size, the back electron transfer rates are found to be retarded. Findings from inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray photoelectron spectroscopy (XPS) reveal that the In to P ratio is higher for QDs with larger core size, which further brings about increased carrier trapping and a decreased rate of charge recombination. Furthermore, long-lived charge-separated states in DV2+ bound to InP, extending to hundreds of milliseconds, are obtained by varying the number of DV2+ in the quenching sphere of the QDs. |
doi_str_mv | 10.1063/5.0146484 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0146484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808591372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-9772692420dfff03446a68e326ad4f5872a1e1fd3307e24a8be9321da92402633</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgipvTC_-AFLxRofPko0mzOxl-DAYK6nXI2lQz1mYmqbB_b3VzgoI3OTfPeU94ETrGMMTA6WU2BMw4y9kO6mPIZSq4hF3UByA4lRx4Dx2EMAcALAjbRz0qMJGYkT4aTZqH5K3VTWzrpHQxjJLH6Gzxal1tol8l3ry0Cx1NSArtvTU-KVeNrm0RDtFepRfBHG3mAD3fXD-N79Lp_e1kfDVNC4bzmEohCJeEESirqgLKGNc8N5RwXbIqywXR2OCqpBSEIUznMyMpwaXudoBwSgfobJ279O6tNSGq2obCLBa6Ma4NiuSQZxJTQTp6-ovOXeub7ndfiuHulZ06X6vCuxC8qdTS21r7lcKgPgtVmdoU2tmTTWI7q025ld8NduBiDUJho47WNVvz7vxPklqW1X_47-kPePmJbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808412809</pqid></control><display><type>article</type><title>InP quantum dots: Stoichiometry regulates carrier dynamics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Manoj, B. ; Rajan, Devika ; Thomas, K. George</creator><creatorcontrib>Manoj, B. ; Rajan, Devika ; Thomas, K. George</creatorcontrib><description>The optical properties of non-toxic indium phosphide (InP) quantum dots (QDs) are impinged by the existence of characteristic deep trap states. Several surface engineering strategies have been adopted to improve their optical quality, which has promoted the use of InP QDs for various technological applications. An antithetical approach involves the effective utilization of the deep trap states in InP QDs to modulate back electron transfer rates. Here, we explore the influence of the core-size of InP on their In-to-P stoichiometry and charge transfer dynamics when bound to an acceptor molecule, decyl viologen (DV2+). The mechanism of interaction of InP and DV2+ based on the quenching sphere model established the presence of (i) a 1:1 complex of DV2+ bound on InP and (ii) immobile quenchers in the quenching sphere, depending on the concentration of DV2+. While the forward electron transfer rates from photoexcited InP to bound DV2+ does not substantially vary with an increase in core size, the back electron transfer rates are found to be retarded. Findings from inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray photoelectron spectroscopy (XPS) reveal that the In to P ratio is higher for QDs with larger core size, which further brings about increased carrier trapping and a decreased rate of charge recombination. Furthermore, long-lived charge-separated states in DV2+ bound to InP, extending to hundreds of milliseconds, are obtained by varying the number of DV2+ in the quenching sphere of the QDs.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0146484</identifier><identifier>PMID: 37129142</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Charge transfer ; Electron transfer ; Indium phosphides ; Inductively coupled plasma ; Optical emission spectroscopy ; Optical properties ; Photoelectrons ; Physics ; Quantum dots ; Quenching ; Spectrum analysis ; Stoichiometry ; X ray photoelectron spectroscopy</subject><ispartof>The Journal of chemical physics, 2023-05, Vol.158 (17)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-9772692420dfff03446a68e326ad4f5872a1e1fd3307e24a8be9321da92402633</citedby><cites>FETCH-LOGICAL-c418t-9772692420dfff03446a68e326ad4f5872a1e1fd3307e24a8be9321da92402633</cites><orcidid>0009-0002-4290-7463 ; 0009-0003-6456-9255 ; 0000-0003-1279-308X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0146484$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,76389</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37129142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manoj, B.</creatorcontrib><creatorcontrib>Rajan, Devika</creatorcontrib><creatorcontrib>Thomas, K. George</creatorcontrib><title>InP quantum dots: Stoichiometry regulates carrier dynamics</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The optical properties of non-toxic indium phosphide (InP) quantum dots (QDs) are impinged by the existence of characteristic deep trap states. Several surface engineering strategies have been adopted to improve their optical quality, which has promoted the use of InP QDs for various technological applications. An antithetical approach involves the effective utilization of the deep trap states in InP QDs to modulate back electron transfer rates. Here, we explore the influence of the core-size of InP on their In-to-P stoichiometry and charge transfer dynamics when bound to an acceptor molecule, decyl viologen (DV2+). The mechanism of interaction of InP and DV2+ based on the quenching sphere model established the presence of (i) a 1:1 complex of DV2+ bound on InP and (ii) immobile quenchers in the quenching sphere, depending on the concentration of DV2+. While the forward electron transfer rates from photoexcited InP to bound DV2+ does not substantially vary with an increase in core size, the back electron transfer rates are found to be retarded. Findings from inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray photoelectron spectroscopy (XPS) reveal that the In to P ratio is higher for QDs with larger core size, which further brings about increased carrier trapping and a decreased rate of charge recombination. Furthermore, long-lived charge-separated states in DV2+ bound to InP, extending to hundreds of milliseconds, are obtained by varying the number of DV2+ in the quenching sphere of the QDs.</description><subject>Charge transfer</subject><subject>Electron transfer</subject><subject>Indium phosphides</subject><subject>Inductively coupled plasma</subject><subject>Optical emission spectroscopy</subject><subject>Optical properties</subject><subject>Photoelectrons</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Quenching</subject><subject>Spectrum analysis</subject><subject>Stoichiometry</subject><subject>X ray photoelectron spectroscopy</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgipvTC_-AFLxRofPko0mzOxl-DAYK6nXI2lQz1mYmqbB_b3VzgoI3OTfPeU94ETrGMMTA6WU2BMw4y9kO6mPIZSq4hF3UByA4lRx4Dx2EMAcALAjbRz0qMJGYkT4aTZqH5K3VTWzrpHQxjJLH6Gzxal1tol8l3ry0Cx1NSArtvTU-KVeNrm0RDtFepRfBHG3mAD3fXD-N79Lp_e1kfDVNC4bzmEohCJeEESirqgLKGNc8N5RwXbIqywXR2OCqpBSEIUznMyMpwaXudoBwSgfobJ279O6tNSGq2obCLBa6Ma4NiuSQZxJTQTp6-ovOXeub7ndfiuHulZ06X6vCuxC8qdTS21r7lcKgPgtVmdoU2tmTTWI7q025ld8NduBiDUJho47WNVvz7vxPklqW1X_47-kPePmJbw</recordid><startdate>20230507</startdate><enddate>20230507</enddate><creator>Manoj, B.</creator><creator>Rajan, Devika</creator><creator>Thomas, K. George</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-4290-7463</orcidid><orcidid>https://orcid.org/0009-0003-6456-9255</orcidid><orcidid>https://orcid.org/0000-0003-1279-308X</orcidid></search><sort><creationdate>20230507</creationdate><title>InP quantum dots: Stoichiometry regulates carrier dynamics</title><author>Manoj, B. ; Rajan, Devika ; Thomas, K. George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-9772692420dfff03446a68e326ad4f5872a1e1fd3307e24a8be9321da92402633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charge transfer</topic><topic>Electron transfer</topic><topic>Indium phosphides</topic><topic>Inductively coupled plasma</topic><topic>Optical emission spectroscopy</topic><topic>Optical properties</topic><topic>Photoelectrons</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Quenching</topic><topic>Spectrum analysis</topic><topic>Stoichiometry</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manoj, B.</creatorcontrib><creatorcontrib>Rajan, Devika</creatorcontrib><creatorcontrib>Thomas, K. George</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manoj, B.</au><au>Rajan, Devika</au><au>Thomas, K. George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InP quantum dots: Stoichiometry regulates carrier dynamics</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-05-07</date><risdate>2023</risdate><volume>158</volume><issue>17</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The optical properties of non-toxic indium phosphide (InP) quantum dots (QDs) are impinged by the existence of characteristic deep trap states. Several surface engineering strategies have been adopted to improve their optical quality, which has promoted the use of InP QDs for various technological applications. An antithetical approach involves the effective utilization of the deep trap states in InP QDs to modulate back electron transfer rates. Here, we explore the influence of the core-size of InP on their In-to-P stoichiometry and charge transfer dynamics when bound to an acceptor molecule, decyl viologen (DV2+). The mechanism of interaction of InP and DV2+ based on the quenching sphere model established the presence of (i) a 1:1 complex of DV2+ bound on InP and (ii) immobile quenchers in the quenching sphere, depending on the concentration of DV2+. While the forward electron transfer rates from photoexcited InP to bound DV2+ does not substantially vary with an increase in core size, the back electron transfer rates are found to be retarded. Findings from inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray photoelectron spectroscopy (XPS) reveal that the In to P ratio is higher for QDs with larger core size, which further brings about increased carrier trapping and a decreased rate of charge recombination. Furthermore, long-lived charge-separated states in DV2+ bound to InP, extending to hundreds of milliseconds, are obtained by varying the number of DV2+ in the quenching sphere of the QDs.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37129142</pmid><doi>10.1063/5.0146484</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0002-4290-7463</orcidid><orcidid>https://orcid.org/0009-0003-6456-9255</orcidid><orcidid>https://orcid.org/0000-0003-1279-308X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-05, Vol.158 (17) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0146484 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Charge transfer Electron transfer Indium phosphides Inductively coupled plasma Optical emission spectroscopy Optical properties Photoelectrons Physics Quantum dots Quenching Spectrum analysis Stoichiometry X ray photoelectron spectroscopy |
title | InP quantum dots: Stoichiometry regulates carrier dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InP%20quantum%20dots:%20Stoichiometry%20regulates%20carrier%20dynamics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Manoj,%20B.&rft.date=2023-05-07&rft.volume=158&rft.issue=17&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0146484&rft_dat=%3Cproquest_cross%3E2808591372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808412809&rft_id=info:pmid/37129142&rfr_iscdi=true |