InP quantum dots: Stoichiometry regulates carrier dynamics

The optical properties of non-toxic indium phosphide (InP) quantum dots (QDs) are impinged by the existence of characteristic deep trap states. Several surface engineering strategies have been adopted to improve their optical quality, which has promoted the use of InP QDs for various technological a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-05, Vol.158 (17)
Hauptverfasser: Manoj, B., Rajan, Devika, Thomas, K. George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page
container_title The Journal of chemical physics
container_volume 158
creator Manoj, B.
Rajan, Devika
Thomas, K. George
description The optical properties of non-toxic indium phosphide (InP) quantum dots (QDs) are impinged by the existence of characteristic deep trap states. Several surface engineering strategies have been adopted to improve their optical quality, which has promoted the use of InP QDs for various technological applications. An antithetical approach involves the effective utilization of the deep trap states in InP QDs to modulate back electron transfer rates. Here, we explore the influence of the core-size of InP on their In-to-P stoichiometry and charge transfer dynamics when bound to an acceptor molecule, decyl viologen (DV2+). The mechanism of interaction of InP and DV2+ based on the quenching sphere model established the presence of (i) a 1:1 complex of DV2+ bound on InP and (ii) immobile quenchers in the quenching sphere, depending on the concentration of DV2+. While the forward electron transfer rates from photoexcited InP to bound DV2+ does not substantially vary with an increase in core size, the back electron transfer rates are found to be retarded. Findings from inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray photoelectron spectroscopy (XPS) reveal that the In to P ratio is higher for QDs with larger core size, which further brings about increased carrier trapping and a decreased rate of charge recombination. Furthermore, long-lived charge-separated states in DV2+ bound to InP, extending to hundreds of milliseconds, are obtained by varying the number of DV2+ in the quenching sphere of the QDs.
doi_str_mv 10.1063/5.0146484
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0146484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808591372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-9772692420dfff03446a68e326ad4f5872a1e1fd3307e24a8be9321da92402633</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgipvTC_-AFLxRofPko0mzOxl-DAYK6nXI2lQz1mYmqbB_b3VzgoI3OTfPeU94ETrGMMTA6WU2BMw4y9kO6mPIZSq4hF3UByA4lRx4Dx2EMAcALAjbRz0qMJGYkT4aTZqH5K3VTWzrpHQxjJLH6Gzxal1tol8l3ry0Cx1NSArtvTU-KVeNrm0RDtFepRfBHG3mAD3fXD-N79Lp_e1kfDVNC4bzmEohCJeEESirqgLKGNc8N5RwXbIqywXR2OCqpBSEIUznMyMpwaXudoBwSgfobJ279O6tNSGq2obCLBa6Ma4NiuSQZxJTQTp6-ovOXeub7ndfiuHulZ06X6vCuxC8qdTS21r7lcKgPgtVmdoU2tmTTWI7q025ld8NduBiDUJho47WNVvz7vxPklqW1X_47-kPePmJbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808412809</pqid></control><display><type>article</type><title>InP quantum dots: Stoichiometry regulates carrier dynamics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Manoj, B. ; Rajan, Devika ; Thomas, K. George</creator><creatorcontrib>Manoj, B. ; Rajan, Devika ; Thomas, K. George</creatorcontrib><description>The optical properties of non-toxic indium phosphide (InP) quantum dots (QDs) are impinged by the existence of characteristic deep trap states. Several surface engineering strategies have been adopted to improve their optical quality, which has promoted the use of InP QDs for various technological applications. An antithetical approach involves the effective utilization of the deep trap states in InP QDs to modulate back electron transfer rates. Here, we explore the influence of the core-size of InP on their In-to-P stoichiometry and charge transfer dynamics when bound to an acceptor molecule, decyl viologen (DV2+). The mechanism of interaction of InP and DV2+ based on the quenching sphere model established the presence of (i) a 1:1 complex of DV2+ bound on InP and (ii) immobile quenchers in the quenching sphere, depending on the concentration of DV2+. While the forward electron transfer rates from photoexcited InP to bound DV2+ does not substantially vary with an increase in core size, the back electron transfer rates are found to be retarded. Findings from inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray photoelectron spectroscopy (XPS) reveal that the In to P ratio is higher for QDs with larger core size, which further brings about increased carrier trapping and a decreased rate of charge recombination. Furthermore, long-lived charge-separated states in DV2+ bound to InP, extending to hundreds of milliseconds, are obtained by varying the number of DV2+ in the quenching sphere of the QDs.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0146484</identifier><identifier>PMID: 37129142</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Charge transfer ; Electron transfer ; Indium phosphides ; Inductively coupled plasma ; Optical emission spectroscopy ; Optical properties ; Photoelectrons ; Physics ; Quantum dots ; Quenching ; Spectrum analysis ; Stoichiometry ; X ray photoelectron spectroscopy</subject><ispartof>The Journal of chemical physics, 2023-05, Vol.158 (17)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-9772692420dfff03446a68e326ad4f5872a1e1fd3307e24a8be9321da92402633</citedby><cites>FETCH-LOGICAL-c418t-9772692420dfff03446a68e326ad4f5872a1e1fd3307e24a8be9321da92402633</cites><orcidid>0009-0002-4290-7463 ; 0009-0003-6456-9255 ; 0000-0003-1279-308X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0146484$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,76389</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37129142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manoj, B.</creatorcontrib><creatorcontrib>Rajan, Devika</creatorcontrib><creatorcontrib>Thomas, K. George</creatorcontrib><title>InP quantum dots: Stoichiometry regulates carrier dynamics</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The optical properties of non-toxic indium phosphide (InP) quantum dots (QDs) are impinged by the existence of characteristic deep trap states. Several surface engineering strategies have been adopted to improve their optical quality, which has promoted the use of InP QDs for various technological applications. An antithetical approach involves the effective utilization of the deep trap states in InP QDs to modulate back electron transfer rates. Here, we explore the influence of the core-size of InP on their In-to-P stoichiometry and charge transfer dynamics when bound to an acceptor molecule, decyl viologen (DV2+). The mechanism of interaction of InP and DV2+ based on the quenching sphere model established the presence of (i) a 1:1 complex of DV2+ bound on InP and (ii) immobile quenchers in the quenching sphere, depending on the concentration of DV2+. While the forward electron transfer rates from photoexcited InP to bound DV2+ does not substantially vary with an increase in core size, the back electron transfer rates are found to be retarded. Findings from inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray photoelectron spectroscopy (XPS) reveal that the In to P ratio is higher for QDs with larger core size, which further brings about increased carrier trapping and a decreased rate of charge recombination. Furthermore, long-lived charge-separated states in DV2+ bound to InP, extending to hundreds of milliseconds, are obtained by varying the number of DV2+ in the quenching sphere of the QDs.</description><subject>Charge transfer</subject><subject>Electron transfer</subject><subject>Indium phosphides</subject><subject>Inductively coupled plasma</subject><subject>Optical emission spectroscopy</subject><subject>Optical properties</subject><subject>Photoelectrons</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Quenching</subject><subject>Spectrum analysis</subject><subject>Stoichiometry</subject><subject>X ray photoelectron spectroscopy</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgipvTC_-AFLxRofPko0mzOxl-DAYK6nXI2lQz1mYmqbB_b3VzgoI3OTfPeU94ETrGMMTA6WU2BMw4y9kO6mPIZSq4hF3UByA4lRx4Dx2EMAcALAjbRz0qMJGYkT4aTZqH5K3VTWzrpHQxjJLH6Gzxal1tol8l3ry0Cx1NSArtvTU-KVeNrm0RDtFepRfBHG3mAD3fXD-N79Lp_e1kfDVNC4bzmEohCJeEESirqgLKGNc8N5RwXbIqywXR2OCqpBSEIUznMyMpwaXudoBwSgfobJ279O6tNSGq2obCLBa6Ma4NiuSQZxJTQTp6-ovOXeub7ndfiuHulZ06X6vCuxC8qdTS21r7lcKgPgtVmdoU2tmTTWI7q025ld8NduBiDUJho47WNVvz7vxPklqW1X_47-kPePmJbw</recordid><startdate>20230507</startdate><enddate>20230507</enddate><creator>Manoj, B.</creator><creator>Rajan, Devika</creator><creator>Thomas, K. George</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-4290-7463</orcidid><orcidid>https://orcid.org/0009-0003-6456-9255</orcidid><orcidid>https://orcid.org/0000-0003-1279-308X</orcidid></search><sort><creationdate>20230507</creationdate><title>InP quantum dots: Stoichiometry regulates carrier dynamics</title><author>Manoj, B. ; Rajan, Devika ; Thomas, K. George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-9772692420dfff03446a68e326ad4f5872a1e1fd3307e24a8be9321da92402633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charge transfer</topic><topic>Electron transfer</topic><topic>Indium phosphides</topic><topic>Inductively coupled plasma</topic><topic>Optical emission spectroscopy</topic><topic>Optical properties</topic><topic>Photoelectrons</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Quenching</topic><topic>Spectrum analysis</topic><topic>Stoichiometry</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manoj, B.</creatorcontrib><creatorcontrib>Rajan, Devika</creatorcontrib><creatorcontrib>Thomas, K. George</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manoj, B.</au><au>Rajan, Devika</au><au>Thomas, K. George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InP quantum dots: Stoichiometry regulates carrier dynamics</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-05-07</date><risdate>2023</risdate><volume>158</volume><issue>17</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The optical properties of non-toxic indium phosphide (InP) quantum dots (QDs) are impinged by the existence of characteristic deep trap states. Several surface engineering strategies have been adopted to improve their optical quality, which has promoted the use of InP QDs for various technological applications. An antithetical approach involves the effective utilization of the deep trap states in InP QDs to modulate back electron transfer rates. Here, we explore the influence of the core-size of InP on their In-to-P stoichiometry and charge transfer dynamics when bound to an acceptor molecule, decyl viologen (DV2+). The mechanism of interaction of InP and DV2+ based on the quenching sphere model established the presence of (i) a 1:1 complex of DV2+ bound on InP and (ii) immobile quenchers in the quenching sphere, depending on the concentration of DV2+. While the forward electron transfer rates from photoexcited InP to bound DV2+ does not substantially vary with an increase in core size, the back electron transfer rates are found to be retarded. Findings from inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray photoelectron spectroscopy (XPS) reveal that the In to P ratio is higher for QDs with larger core size, which further brings about increased carrier trapping and a decreased rate of charge recombination. Furthermore, long-lived charge-separated states in DV2+ bound to InP, extending to hundreds of milliseconds, are obtained by varying the number of DV2+ in the quenching sphere of the QDs.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37129142</pmid><doi>10.1063/5.0146484</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0002-4290-7463</orcidid><orcidid>https://orcid.org/0009-0003-6456-9255</orcidid><orcidid>https://orcid.org/0000-0003-1279-308X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-05, Vol.158 (17)
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0146484
source AIP Journals Complete; Alma/SFX Local Collection
subjects Charge transfer
Electron transfer
Indium phosphides
Inductively coupled plasma
Optical emission spectroscopy
Optical properties
Photoelectrons
Physics
Quantum dots
Quenching
Spectrum analysis
Stoichiometry
X ray photoelectron spectroscopy
title InP quantum dots: Stoichiometry regulates carrier dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InP%20quantum%20dots:%20Stoichiometry%20regulates%20carrier%20dynamics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Manoj,%20B.&rft.date=2023-05-07&rft.volume=158&rft.issue=17&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0146484&rft_dat=%3Cproquest_cross%3E2808591372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808412809&rft_id=info:pmid/37129142&rfr_iscdi=true