Modeling nonlinear optical interactions of focused beams in bulk crystals and thin films: A phenomenological approach

Coherent nonlinear optical μ-spectroscopy is a frequently used tool in modern material science as it is sensitive to many different local observables, which comprise, among others, crystal symmetry and vibrational properties. The richness in information, however, may come with challenges in data int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2023-03, Vol.133 (12)
Hauptverfasser: Spychala, Kai J., Amber, Zeeshan H., Eng, Lukas M., Ruesing, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Journal of applied physics
container_volume 133
creator Spychala, Kai J.
Amber, Zeeshan H.
Eng, Lukas M.
Ruesing, Michael
description Coherent nonlinear optical μ-spectroscopy is a frequently used tool in modern material science as it is sensitive to many different local observables, which comprise, among others, crystal symmetry and vibrational properties. The richness in information, however, may come with challenges in data interpretation, as one has to disentangle the many different effects like multiple reflections, phase jumps at interfaces, or the influence of the Guoy-phase. In order to facilitate interpretation, the work presented here proposes an easy-to-use semi-analytical modeling Ansatz, which bases upon known analytical solutions using Gaussian beams. Specifically, we apply this Ansatz to compute nonlinear optical responses of (thin film) optical materials. We try to conserve the meaning of intuitive parameters like the Gouy-phase and the nonlinear coherent interaction length. In particular, the concept of coherence length is extended, which is a must when using focal beams. The model is subsequently applied to exemplary cases of second- and third-harmonic generation. We observe a very good agreement with experimental data, and furthermore, despite the constraints and limits of the analytical Ansatz, our model performs similarly well as when using more rigorous simulations. However, it outperforms the latter in terms of computational power, requiring more than three orders less computational time and less performant computer systems.
doi_str_mv 10.1063/5.0136252
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0136252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793230532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-c21b7c3e9ee348cdf4cb1515fc8d92a2f43ab748a55e2db7fd6b2cc4010719353</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWfGy6G29F_IKKFz2HbD7arbvJmmSF_ntTW_DuYWZg5pl3mBeAS4xmGM3pLZshTOeEkSMwwajmRcUYOgYThAgual7xU3AW4wYhjGvKJ2B89dp0rVtB512uRgboh9Qq2cHWJROkSq13EXoLrVdjNBo2RvYxT2Ezdp9QhW1MsotQOg3TOrdt2_XxDi7gsDbO9zk6v_pVlMMQvFTrc3Bi84q5ONQp-Hh8eL9_LpZvTy_3i2Wh8g-pUAQ3laKGG0PLWmlbqgYzzKyqNSeS2JLKpipryZghuqmsnjdEqRJhVGFOGZ2Cq71uPvs1mpjExo_B5ZOCVJwSilhOU3C9p1TwMQZjxRDaXoatwEjsXBVMHFzN7M2ejapNcmfN_-BvH_5AMWhLfwAUBYeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793230532</pqid></control><display><type>article</type><title>Modeling nonlinear optical interactions of focused beams in bulk crystals and thin films: A phenomenological approach</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Spychala, Kai J. ; Amber, Zeeshan H. ; Eng, Lukas M. ; Ruesing, Michael</creator><creatorcontrib>Spychala, Kai J. ; Amber, Zeeshan H. ; Eng, Lukas M. ; Ruesing, Michael</creatorcontrib><description>Coherent nonlinear optical μ-spectroscopy is a frequently used tool in modern material science as it is sensitive to many different local observables, which comprise, among others, crystal symmetry and vibrational properties. The richness in information, however, may come with challenges in data interpretation, as one has to disentangle the many different effects like multiple reflections, phase jumps at interfaces, or the influence of the Guoy-phase. In order to facilitate interpretation, the work presented here proposes an easy-to-use semi-analytical modeling Ansatz, which bases upon known analytical solutions using Gaussian beams. Specifically, we apply this Ansatz to compute nonlinear optical responses of (thin film) optical materials. We try to conserve the meaning of intuitive parameters like the Gouy-phase and the nonlinear coherent interaction length. In particular, the concept of coherence length is extended, which is a must when using focal beams. The model is subsequently applied to exemplary cases of second- and third-harmonic generation. We observe a very good agreement with experimental data, and furthermore, despite the constraints and limits of the analytical Ansatz, our model performs similarly well as when using more rigorous simulations. However, it outperforms the latter in terms of computational power, requiring more than three orders less computational time and less performant computer systems.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0136252</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Coherence length ; Computing time ; Exact solutions ; Gaussian beams (optics) ; Harmonic generations ; Ion beams ; Modelling ; Nonlinear optics ; Optical materials ; Optics ; Thin films</subject><ispartof>Journal of applied physics, 2023-03, Vol.133 (12)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-c21b7c3e9ee348cdf4cb1515fc8d92a2f43ab748a55e2db7fd6b2cc4010719353</citedby><cites>FETCH-LOGICAL-c362t-c21b7c3e9ee348cdf4cb1515fc8d92a2f43ab748a55e2db7fd6b2cc4010719353</cites><orcidid>0000-0002-2484-4158 ; 0000-0001-6092-3470 ; 0000-0002-1796-4979 ; 0000-0003-4682-4577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0136252$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,76389</link.rule.ids></links><search><creatorcontrib>Spychala, Kai J.</creatorcontrib><creatorcontrib>Amber, Zeeshan H.</creatorcontrib><creatorcontrib>Eng, Lukas M.</creatorcontrib><creatorcontrib>Ruesing, Michael</creatorcontrib><title>Modeling nonlinear optical interactions of focused beams in bulk crystals and thin films: A phenomenological approach</title><title>Journal of applied physics</title><description>Coherent nonlinear optical μ-spectroscopy is a frequently used tool in modern material science as it is sensitive to many different local observables, which comprise, among others, crystal symmetry and vibrational properties. The richness in information, however, may come with challenges in data interpretation, as one has to disentangle the many different effects like multiple reflections, phase jumps at interfaces, or the influence of the Guoy-phase. In order to facilitate interpretation, the work presented here proposes an easy-to-use semi-analytical modeling Ansatz, which bases upon known analytical solutions using Gaussian beams. Specifically, we apply this Ansatz to compute nonlinear optical responses of (thin film) optical materials. We try to conserve the meaning of intuitive parameters like the Gouy-phase and the nonlinear coherent interaction length. In particular, the concept of coherence length is extended, which is a must when using focal beams. The model is subsequently applied to exemplary cases of second- and third-harmonic generation. We observe a very good agreement with experimental data, and furthermore, despite the constraints and limits of the analytical Ansatz, our model performs similarly well as when using more rigorous simulations. However, it outperforms the latter in terms of computational power, requiring more than three orders less computational time and less performant computer systems.</description><subject>Applied physics</subject><subject>Coherence length</subject><subject>Computing time</subject><subject>Exact solutions</subject><subject>Gaussian beams (optics)</subject><subject>Harmonic generations</subject><subject>Ion beams</subject><subject>Modelling</subject><subject>Nonlinear optics</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Thin films</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWfGy6G29F_IKKFz2HbD7arbvJmmSF_ntTW_DuYWZg5pl3mBeAS4xmGM3pLZshTOeEkSMwwajmRcUYOgYThAgual7xU3AW4wYhjGvKJ2B89dp0rVtB512uRgboh9Qq2cHWJROkSq13EXoLrVdjNBo2RvYxT2Ezdp9QhW1MsotQOg3TOrdt2_XxDi7gsDbO9zk6v_pVlMMQvFTrc3Bi84q5ONQp-Hh8eL9_LpZvTy_3i2Wh8g-pUAQ3laKGG0PLWmlbqgYzzKyqNSeS2JLKpipryZghuqmsnjdEqRJhVGFOGZ2Cq71uPvs1mpjExo_B5ZOCVJwSilhOU3C9p1TwMQZjxRDaXoatwEjsXBVMHFzN7M2ejapNcmfN_-BvH_5AMWhLfwAUBYeM</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>Spychala, Kai J.</creator><creator>Amber, Zeeshan H.</creator><creator>Eng, Lukas M.</creator><creator>Ruesing, Michael</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2484-4158</orcidid><orcidid>https://orcid.org/0000-0001-6092-3470</orcidid><orcidid>https://orcid.org/0000-0002-1796-4979</orcidid><orcidid>https://orcid.org/0000-0003-4682-4577</orcidid></search><sort><creationdate>20230328</creationdate><title>Modeling nonlinear optical interactions of focused beams in bulk crystals and thin films: A phenomenological approach</title><author>Spychala, Kai J. ; Amber, Zeeshan H. ; Eng, Lukas M. ; Ruesing, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-c21b7c3e9ee348cdf4cb1515fc8d92a2f43ab748a55e2db7fd6b2cc4010719353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Coherence length</topic><topic>Computing time</topic><topic>Exact solutions</topic><topic>Gaussian beams (optics)</topic><topic>Harmonic generations</topic><topic>Ion beams</topic><topic>Modelling</topic><topic>Nonlinear optics</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spychala, Kai J.</creatorcontrib><creatorcontrib>Amber, Zeeshan H.</creatorcontrib><creatorcontrib>Eng, Lukas M.</creatorcontrib><creatorcontrib>Ruesing, Michael</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spychala, Kai J.</au><au>Amber, Zeeshan H.</au><au>Eng, Lukas M.</au><au>Ruesing, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling nonlinear optical interactions of focused beams in bulk crystals and thin films: A phenomenological approach</atitle><jtitle>Journal of applied physics</jtitle><date>2023-03-28</date><risdate>2023</risdate><volume>133</volume><issue>12</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Coherent nonlinear optical μ-spectroscopy is a frequently used tool in modern material science as it is sensitive to many different local observables, which comprise, among others, crystal symmetry and vibrational properties. The richness in information, however, may come with challenges in data interpretation, as one has to disentangle the many different effects like multiple reflections, phase jumps at interfaces, or the influence of the Guoy-phase. In order to facilitate interpretation, the work presented here proposes an easy-to-use semi-analytical modeling Ansatz, which bases upon known analytical solutions using Gaussian beams. Specifically, we apply this Ansatz to compute nonlinear optical responses of (thin film) optical materials. We try to conserve the meaning of intuitive parameters like the Gouy-phase and the nonlinear coherent interaction length. In particular, the concept of coherence length is extended, which is a must when using focal beams. The model is subsequently applied to exemplary cases of second- and third-harmonic generation. We observe a very good agreement with experimental data, and furthermore, despite the constraints and limits of the analytical Ansatz, our model performs similarly well as when using more rigorous simulations. However, it outperforms the latter in terms of computational power, requiring more than three orders less computational time and less performant computer systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0136252</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2484-4158</orcidid><orcidid>https://orcid.org/0000-0001-6092-3470</orcidid><orcidid>https://orcid.org/0000-0002-1796-4979</orcidid><orcidid>https://orcid.org/0000-0003-4682-4577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-03, Vol.133 (12)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0136252
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection
subjects Applied physics
Coherence length
Computing time
Exact solutions
Gaussian beams (optics)
Harmonic generations
Ion beams
Modelling
Nonlinear optics
Optical materials
Optics
Thin films
title Modeling nonlinear optical interactions of focused beams in bulk crystals and thin films: A phenomenological approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20nonlinear%20optical%20interactions%20of%20focused%20beams%20in%20bulk%20crystals%20and%20thin%20films:%20A%20phenomenological%20approach&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Spychala,%20Kai%20J.&rft.date=2023-03-28&rft.volume=133&rft.issue=12&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0136252&rft_dat=%3Cproquest_cross%3E2793230532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793230532&rft_id=info:pmid/&rfr_iscdi=true