Analysis techniques for blob properties from gas puff imaging data

Filamentary structures, also known as blobs, are a prominent feature of turbulence and transport at the edge of magnetically confined plasmas. They cause cross-field particle and energy transport and are, therefore, of interest in tokamak physics and, more generally, nuclear fusion research. Several...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2023-03, Vol.94 (3), p.033512-033512
Hauptverfasser: Offeddu, N., Wüthrich, C., Han, W., Theiler, C., Golfinopoulos, T., Terry, J. L., Marmar, E., Ravetta, A., Van Parys, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 033512
container_issue 3
container_start_page 033512
container_title Review of scientific instruments
container_volume 94
creator Offeddu, N.
Wüthrich, C.
Han, W.
Theiler, C.
Golfinopoulos, T.
Terry, J. L.
Marmar, E.
Ravetta, A.
Van Parys, G.
description Filamentary structures, also known as blobs, are a prominent feature of turbulence and transport at the edge of magnetically confined plasmas. They cause cross-field particle and energy transport and are, therefore, of interest in tokamak physics and, more generally, nuclear fusion research. Several experimental techniques have been developed to study their properties. Among these, measurements are routinely performed with stationary probes, passive imaging, and, in more recent years, Gas Puff Imaging (GPI). In this work, we present different analysis techniques developed and used on 2D data from the suite of GPI diagnostics in the Tokamak à Configuration Variable, featuring different temporal and spatial resolutions. Although specifically developed to be used on GPI data, these techniques can be employed to analyze 2D turbulence data presenting intermittent, coherent structures. We focus on size, velocity, and appearance frequency evaluation with, among other methods, conditional averaging sampling, individual structure tracking, and a recently developed machine learning algorithm. We describe in detail the implementation of these techniques, compare them against each other, and comment on the scenarios to which these techniques are best applied and on the requirements that the data must fulfill in order to yield meaningful results.
doi_str_mv 10.1063/5.0133506
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0133506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791403905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-26a02c17f30c6b61535a030479901ace94ad465505e5917f7583dbe395fc07a33</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgio6XhS8gRTcqVE-a22Q5ijcQ3Og6pGk6RjpNTVrBtzd1RgUFswmEjz_n_AjtYzjDwMk5OwNMCAO-hiYYpjIXvCDraAJAaM4FnW6h7RhfIB2G8SbaIgJwIQSfoItZq5v36GLWW_PcutfBxqz2ISsbX2Zd8J0NvRvfgl9kcx2zbqjrzC303LXzrNK93kUbtW6i3VvdO-jp-urx8ja_f7i5u5zd54ZS1ucF11AYLGoChpccM8I0EKBCSsDaWEl1RTljwCyTiQk2JVVpiWS1AaEJ2UGHy1wfe6eicePExretNb3CkhNW4ISOlyiNPu7Sq4WLxjaNbq0foiqEZIQXkhaJHv2iL34IqY5PhSkQCSypk6UywccYbK26kLYP7wqDGttXTK3aT_ZglTiUC1t9y6-6EzhdgnF63Tvffps3H36SVFfV_-G_X38AeS6XoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791403905</pqid></control><display><type>article</type><title>Analysis techniques for blob properties from gas puff imaging data</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Offeddu, N. ; Wüthrich, C. ; Han, W. ; Theiler, C. ; Golfinopoulos, T. ; Terry, J. L. ; Marmar, E. ; Ravetta, A. ; Van Parys, G.</creator><creatorcontrib>Offeddu, N. ; Wüthrich, C. ; Han, W. ; Theiler, C. ; Golfinopoulos, T. ; Terry, J. L. ; Marmar, E. ; Ravetta, A. ; Van Parys, G.</creatorcontrib><description>Filamentary structures, also known as blobs, are a prominent feature of turbulence and transport at the edge of magnetically confined plasmas. They cause cross-field particle and energy transport and are, therefore, of interest in tokamak physics and, more generally, nuclear fusion research. Several experimental techniques have been developed to study their properties. Among these, measurements are routinely performed with stationary probes, passive imaging, and, in more recent years, Gas Puff Imaging (GPI). In this work, we present different analysis techniques developed and used on 2D data from the suite of GPI diagnostics in the Tokamak à Configuration Variable, featuring different temporal and spatial resolutions. Although specifically developed to be used on GPI data, these techniques can be employed to analyze 2D turbulence data presenting intermittent, coherent structures. We focus on size, velocity, and appearance frequency evaluation with, among other methods, conditional averaging sampling, individual structure tracking, and a recently developed machine learning algorithm. We describe in detail the implementation of these techniques, compare them against each other, and comment on the scenarios to which these techniques are best applied and on the requirements that the data must fulfill in order to yield meaningful results.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0133506</identifier><identifier>PMID: 37012776</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Machine learning ; Nuclear fusion ; Passive imaging ; Scientific apparatus &amp; instruments ; Tokamak devices ; Turbulence ; Two dimensional analysis</subject><ispartof>Review of scientific instruments, 2023-03, Vol.94 (3), p.033512-033512</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-26a02c17f30c6b61535a030479901ace94ad465505e5917f7583dbe395fc07a33</citedby><cites>FETCH-LOGICAL-c445t-26a02c17f30c6b61535a030479901ace94ad465505e5917f7583dbe395fc07a33</cites><orcidid>0000-0001-8799-9555 ; 0000-0002-7554-813X ; 0000-0002-0534-1993 ; 0000-0003-4255-5509 ; 0000-0001-7548-2452 ; 0000-0003-3926-1374 ; 0000000339261374 ; 0000000175482452 ; 0000000205341993 ; 0000000187999555 ; 000000027554813X ; 0000000342555509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0133506$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37012776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1963521$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Offeddu, N.</creatorcontrib><creatorcontrib>Wüthrich, C.</creatorcontrib><creatorcontrib>Han, W.</creatorcontrib><creatorcontrib>Theiler, C.</creatorcontrib><creatorcontrib>Golfinopoulos, T.</creatorcontrib><creatorcontrib>Terry, J. L.</creatorcontrib><creatorcontrib>Marmar, E.</creatorcontrib><creatorcontrib>Ravetta, A.</creatorcontrib><creatorcontrib>Van Parys, G.</creatorcontrib><title>Analysis techniques for blob properties from gas puff imaging data</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Filamentary structures, also known as blobs, are a prominent feature of turbulence and transport at the edge of magnetically confined plasmas. They cause cross-field particle and energy transport and are, therefore, of interest in tokamak physics and, more generally, nuclear fusion research. Several experimental techniques have been developed to study their properties. Among these, measurements are routinely performed with stationary probes, passive imaging, and, in more recent years, Gas Puff Imaging (GPI). In this work, we present different analysis techniques developed and used on 2D data from the suite of GPI diagnostics in the Tokamak à Configuration Variable, featuring different temporal and spatial resolutions. Although specifically developed to be used on GPI data, these techniques can be employed to analyze 2D turbulence data presenting intermittent, coherent structures. We focus on size, velocity, and appearance frequency evaluation with, among other methods, conditional averaging sampling, individual structure tracking, and a recently developed machine learning algorithm. We describe in detail the implementation of these techniques, compare them against each other, and comment on the scenarios to which these techniques are best applied and on the requirements that the data must fulfill in order to yield meaningful results.</description><subject>Algorithms</subject><subject>Machine learning</subject><subject>Nuclear fusion</subject><subject>Passive imaging</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Tokamak devices</subject><subject>Turbulence</subject><subject>Two dimensional analysis</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgio6XhS8gRTcqVE-a22Q5ijcQ3Og6pGk6RjpNTVrBtzd1RgUFswmEjz_n_AjtYzjDwMk5OwNMCAO-hiYYpjIXvCDraAJAaM4FnW6h7RhfIB2G8SbaIgJwIQSfoItZq5v36GLWW_PcutfBxqz2ISsbX2Zd8J0NvRvfgl9kcx2zbqjrzC303LXzrNK93kUbtW6i3VvdO-jp-urx8ja_f7i5u5zd54ZS1ucF11AYLGoChpccM8I0EKBCSsDaWEl1RTljwCyTiQk2JVVpiWS1AaEJ2UGHy1wfe6eicePExretNb3CkhNW4ISOlyiNPu7Sq4WLxjaNbq0foiqEZIQXkhaJHv2iL34IqY5PhSkQCSypk6UywccYbK26kLYP7wqDGttXTK3aT_ZglTiUC1t9y6-6EzhdgnF63Tvffps3H36SVFfV_-G_X38AeS6XoA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Offeddu, N.</creator><creator>Wüthrich, C.</creator><creator>Han, W.</creator><creator>Theiler, C.</creator><creator>Golfinopoulos, T.</creator><creator>Terry, J. L.</creator><creator>Marmar, E.</creator><creator>Ravetta, A.</creator><creator>Van Parys, G.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8799-9555</orcidid><orcidid>https://orcid.org/0000-0002-7554-813X</orcidid><orcidid>https://orcid.org/0000-0002-0534-1993</orcidid><orcidid>https://orcid.org/0000-0003-4255-5509</orcidid><orcidid>https://orcid.org/0000-0001-7548-2452</orcidid><orcidid>https://orcid.org/0000-0003-3926-1374</orcidid><orcidid>https://orcid.org/0000000339261374</orcidid><orcidid>https://orcid.org/0000000175482452</orcidid><orcidid>https://orcid.org/0000000205341993</orcidid><orcidid>https://orcid.org/0000000187999555</orcidid><orcidid>https://orcid.org/000000027554813X</orcidid><orcidid>https://orcid.org/0000000342555509</orcidid></search><sort><creationdate>20230301</creationdate><title>Analysis techniques for blob properties from gas puff imaging data</title><author>Offeddu, N. ; Wüthrich, C. ; Han, W. ; Theiler, C. ; Golfinopoulos, T. ; Terry, J. L. ; Marmar, E. ; Ravetta, A. ; Van Parys, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-26a02c17f30c6b61535a030479901ace94ad465505e5917f7583dbe395fc07a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Machine learning</topic><topic>Nuclear fusion</topic><topic>Passive imaging</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Tokamak devices</topic><topic>Turbulence</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Offeddu, N.</creatorcontrib><creatorcontrib>Wüthrich, C.</creatorcontrib><creatorcontrib>Han, W.</creatorcontrib><creatorcontrib>Theiler, C.</creatorcontrib><creatorcontrib>Golfinopoulos, T.</creatorcontrib><creatorcontrib>Terry, J. L.</creatorcontrib><creatorcontrib>Marmar, E.</creatorcontrib><creatorcontrib>Ravetta, A.</creatorcontrib><creatorcontrib>Van Parys, G.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Offeddu, N.</au><au>Wüthrich, C.</au><au>Han, W.</au><au>Theiler, C.</au><au>Golfinopoulos, T.</au><au>Terry, J. L.</au><au>Marmar, E.</au><au>Ravetta, A.</au><au>Van Parys, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis techniques for blob properties from gas puff imaging data</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>94</volume><issue>3</issue><spage>033512</spage><epage>033512</epage><pages>033512-033512</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Filamentary structures, also known as blobs, are a prominent feature of turbulence and transport at the edge of magnetically confined plasmas. They cause cross-field particle and energy transport and are, therefore, of interest in tokamak physics and, more generally, nuclear fusion research. Several experimental techniques have been developed to study their properties. Among these, measurements are routinely performed with stationary probes, passive imaging, and, in more recent years, Gas Puff Imaging (GPI). In this work, we present different analysis techniques developed and used on 2D data from the suite of GPI diagnostics in the Tokamak à Configuration Variable, featuring different temporal and spatial resolutions. Although specifically developed to be used on GPI data, these techniques can be employed to analyze 2D turbulence data presenting intermittent, coherent structures. We focus on size, velocity, and appearance frequency evaluation with, among other methods, conditional averaging sampling, individual structure tracking, and a recently developed machine learning algorithm. We describe in detail the implementation of these techniques, compare them against each other, and comment on the scenarios to which these techniques are best applied and on the requirements that the data must fulfill in order to yield meaningful results.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37012776</pmid><doi>10.1063/5.0133506</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8799-9555</orcidid><orcidid>https://orcid.org/0000-0002-7554-813X</orcidid><orcidid>https://orcid.org/0000-0002-0534-1993</orcidid><orcidid>https://orcid.org/0000-0003-4255-5509</orcidid><orcidid>https://orcid.org/0000-0001-7548-2452</orcidid><orcidid>https://orcid.org/0000-0003-3926-1374</orcidid><orcidid>https://orcid.org/0000000339261374</orcidid><orcidid>https://orcid.org/0000000175482452</orcidid><orcidid>https://orcid.org/0000000205341993</orcidid><orcidid>https://orcid.org/0000000187999555</orcidid><orcidid>https://orcid.org/000000027554813X</orcidid><orcidid>https://orcid.org/0000000342555509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2023-03, Vol.94 (3), p.033512-033512
issn 0034-6748
1089-7623
language eng
recordid cdi_crossref_primary_10_1063_5_0133506
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Machine learning
Nuclear fusion
Passive imaging
Scientific apparatus & instruments
Tokamak devices
Turbulence
Two dimensional analysis
title Analysis techniques for blob properties from gas puff imaging data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20techniques%20for%20blob%20properties%20from%20gas%20puff%20imaging%20data&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Offeddu,%20N.&rft.date=2023-03-01&rft.volume=94&rft.issue=3&rft.spage=033512&rft.epage=033512&rft.pages=033512-033512&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0133506&rft_dat=%3Cproquest_cross%3E2791403905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791403905&rft_id=info:pmid/37012776&rfr_iscdi=true