Magnetic plasmons in plasmonic nanostructures: An overview

The magnetic response of most natural materials, characterized by magnetic permeability, is generally weak. Particularly, in the optical range, the weakness of magnetic effects is directly related to the asymmetry between electric and magnetic charges. Harnessing artificial magnetism started with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2023-01, Vol.133 (3)
Hauptverfasser: Wu, Yuyang, Xie, Peng, Ding, Qi, Li, Yuhang, Yue, Ling, Zhang, Hong, Wang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of applied physics
container_volume 133
creator Wu, Yuyang
Xie, Peng
Ding, Qi
Li, Yuhang
Yue, Ling
Zhang, Hong
Wang, Wei
description The magnetic response of most natural materials, characterized by magnetic permeability, is generally weak. Particularly, in the optical range, the weakness of magnetic effects is directly related to the asymmetry between electric and magnetic charges. Harnessing artificial magnetism started with a pursuit of metamaterial design exhibiting magnetic properties. The first demonstration of artificial magnetism was given by a plasmonic nanostructure called split-ring resonators. Engineered circulating currents form magnetic plasmons, acting as the source of artificial magnetism in response to external electromagnetic excitation. In the past two decades, magnetic plasmons supported by plasmonic nanostructures have become an active topic of study. This Perspective reviews the latest studies on magnetic plasmons in plasmonic nanostructures. A comprehensive summary of various plasmonic nanostructures supporting magnetic plasmons, including split-ring resonators, metal–insulator–metal structures, metallic deep groove arrays, and plasmonic nanoclusters, is presented. Fundamental studies and applications based on magnetic plasmons are discussed. The formidable challenges and the prospects of the future study directions on developing magnetic plasmonic nanostructures are proposed.
doi_str_mv 10.1063/5.0131903
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0131903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766865368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-aa6bfe934c3ceb70984c3679fc7f6df60a05be888b89ed54d247c330024fbc3d3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwZNC10nTpMnelsUvWPGi55CmiXTZTWqSVvz3VnbVg-BphuFhZngROscww8DINZ0BJlgAOUATDFzkFaVwiCYABc65qMQxOolxDYAxJ2KC5o_q1ZnU6qzbqLj1Lmat--7HqVPOxxR6nfpg4jxbuMwPJgyteT9FR1Ztojnb1yl6ub15Xt7nq6e7h-VilWvCipQrxWprBCk10aauQPCxY5WwurKssQwU0NpwzmsuTEPLpigrTcj4cGlrTRoyRRe7vV3wb72JSa59H9x4UhYVY5xRwvioLndKBx9jMFZ2od2q8CExyK9oJJX7aEZ7tbNRt0ml1rsfPPjwC2XX2P_w382fx69x2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766865368</pqid></control><display><type>article</type><title>Magnetic plasmons in plasmonic nanostructures: An overview</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wu, Yuyang ; Xie, Peng ; Ding, Qi ; Li, Yuhang ; Yue, Ling ; Zhang, Hong ; Wang, Wei</creator><creatorcontrib>Wu, Yuyang ; Xie, Peng ; Ding, Qi ; Li, Yuhang ; Yue, Ling ; Zhang, Hong ; Wang, Wei</creatorcontrib><description>The magnetic response of most natural materials, characterized by magnetic permeability, is generally weak. Particularly, in the optical range, the weakness of magnetic effects is directly related to the asymmetry between electric and magnetic charges. Harnessing artificial magnetism started with a pursuit of metamaterial design exhibiting magnetic properties. The first demonstration of artificial magnetism was given by a plasmonic nanostructure called split-ring resonators. Engineered circulating currents form magnetic plasmons, acting as the source of artificial magnetism in response to external electromagnetic excitation. In the past two decades, magnetic plasmons supported by plasmonic nanostructures have become an active topic of study. This Perspective reviews the latest studies on magnetic plasmons in plasmonic nanostructures. A comprehensive summary of various plasmonic nanostructures supporting magnetic plasmons, including split-ring resonators, metal–insulator–metal structures, metallic deep groove arrays, and plasmonic nanoclusters, is presented. Fundamental studies and applications based on magnetic plasmons are discussed. The formidable challenges and the prospects of the future study directions on developing magnetic plasmonic nanostructures are proposed.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0131903</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Grooves ; Magnetic effects ; Magnetic permeability ; Magnetic properties ; Magnetism ; Metamaterials ; Nanoclusters ; Nanostructure ; Plasmonics ; Plasmons ; Resonators</subject><ispartof>Journal of applied physics, 2023-01, Vol.133 (3)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-aa6bfe934c3ceb70984c3679fc7f6df60a05be888b89ed54d247c330024fbc3d3</citedby><cites>FETCH-LOGICAL-c362t-aa6bfe934c3ceb70984c3679fc7f6df60a05be888b89ed54d247c330024fbc3d3</cites><orcidid>0000-0002-6418-9629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0131903$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Wu, Yuyang</creatorcontrib><creatorcontrib>Xie, Peng</creatorcontrib><creatorcontrib>Ding, Qi</creatorcontrib><creatorcontrib>Li, Yuhang</creatorcontrib><creatorcontrib>Yue, Ling</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><title>Magnetic plasmons in plasmonic nanostructures: An overview</title><title>Journal of applied physics</title><description>The magnetic response of most natural materials, characterized by magnetic permeability, is generally weak. Particularly, in the optical range, the weakness of magnetic effects is directly related to the asymmetry between electric and magnetic charges. Harnessing artificial magnetism started with a pursuit of metamaterial design exhibiting magnetic properties. The first demonstration of artificial magnetism was given by a plasmonic nanostructure called split-ring resonators. Engineered circulating currents form magnetic plasmons, acting as the source of artificial magnetism in response to external electromagnetic excitation. In the past two decades, magnetic plasmons supported by plasmonic nanostructures have become an active topic of study. This Perspective reviews the latest studies on magnetic plasmons in plasmonic nanostructures. A comprehensive summary of various plasmonic nanostructures supporting magnetic plasmons, including split-ring resonators, metal–insulator–metal structures, metallic deep groove arrays, and plasmonic nanoclusters, is presented. Fundamental studies and applications based on magnetic plasmons are discussed. The formidable challenges and the prospects of the future study directions on developing magnetic plasmonic nanostructures are proposed.</description><subject>Applied physics</subject><subject>Grooves</subject><subject>Magnetic effects</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Metamaterials</subject><subject>Nanoclusters</subject><subject>Nanostructure</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Resonators</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BwZNC10nTpMnelsUvWPGi55CmiXTZTWqSVvz3VnbVg-BphuFhZngROscww8DINZ0BJlgAOUATDFzkFaVwiCYABc65qMQxOolxDYAxJ2KC5o_q1ZnU6qzbqLj1Lmat--7HqVPOxxR6nfpg4jxbuMwPJgyteT9FR1Ztojnb1yl6ub15Xt7nq6e7h-VilWvCipQrxWprBCk10aauQPCxY5WwurKssQwU0NpwzmsuTEPLpigrTcj4cGlrTRoyRRe7vV3wb72JSa59H9x4UhYVY5xRwvioLndKBx9jMFZ2od2q8CExyK9oJJX7aEZ7tbNRt0ml1rsfPPjwC2XX2P_w382fx69x2A</recordid><startdate>20230121</startdate><enddate>20230121</enddate><creator>Wu, Yuyang</creator><creator>Xie, Peng</creator><creator>Ding, Qi</creator><creator>Li, Yuhang</creator><creator>Yue, Ling</creator><creator>Zhang, Hong</creator><creator>Wang, Wei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6418-9629</orcidid></search><sort><creationdate>20230121</creationdate><title>Magnetic plasmons in plasmonic nanostructures: An overview</title><author>Wu, Yuyang ; Xie, Peng ; Ding, Qi ; Li, Yuhang ; Yue, Ling ; Zhang, Hong ; Wang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-aa6bfe934c3ceb70984c3679fc7f6df60a05be888b89ed54d247c330024fbc3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Grooves</topic><topic>Magnetic effects</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Metamaterials</topic><topic>Nanoclusters</topic><topic>Nanostructure</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Resonators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yuyang</creatorcontrib><creatorcontrib>Xie, Peng</creatorcontrib><creatorcontrib>Ding, Qi</creatorcontrib><creatorcontrib>Li, Yuhang</creatorcontrib><creatorcontrib>Yue, Ling</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yuyang</au><au>Xie, Peng</au><au>Ding, Qi</au><au>Li, Yuhang</au><au>Yue, Ling</au><au>Zhang, Hong</au><au>Wang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic plasmons in plasmonic nanostructures: An overview</atitle><jtitle>Journal of applied physics</jtitle><date>2023-01-21</date><risdate>2023</risdate><volume>133</volume><issue>3</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The magnetic response of most natural materials, characterized by magnetic permeability, is generally weak. Particularly, in the optical range, the weakness of magnetic effects is directly related to the asymmetry between electric and magnetic charges. Harnessing artificial magnetism started with a pursuit of metamaterial design exhibiting magnetic properties. The first demonstration of artificial magnetism was given by a plasmonic nanostructure called split-ring resonators. Engineered circulating currents form magnetic plasmons, acting as the source of artificial magnetism in response to external electromagnetic excitation. In the past two decades, magnetic plasmons supported by plasmonic nanostructures have become an active topic of study. This Perspective reviews the latest studies on magnetic plasmons in plasmonic nanostructures. A comprehensive summary of various plasmonic nanostructures supporting magnetic plasmons, including split-ring resonators, metal–insulator–metal structures, metallic deep groove arrays, and plasmonic nanoclusters, is presented. Fundamental studies and applications based on magnetic plasmons are discussed. The formidable challenges and the prospects of the future study directions on developing magnetic plasmonic nanostructures are proposed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0131903</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6418-9629</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-01, Vol.133 (3)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0131903
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Grooves
Magnetic effects
Magnetic permeability
Magnetic properties
Magnetism
Metamaterials
Nanoclusters
Nanostructure
Plasmonics
Plasmons
Resonators
title Magnetic plasmons in plasmonic nanostructures: An overview
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20plasmons%20in%20plasmonic%20nanostructures:%20An%20overview&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Wu,%20Yuyang&rft.date=2023-01-21&rft.volume=133&rft.issue=3&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0131903&rft_dat=%3Cproquest_cross%3E2766865368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766865368&rft_id=info:pmid/&rfr_iscdi=true