Magnetic plasmons in plasmonic nanostructures: An overview
The magnetic response of most natural materials, characterized by magnetic permeability, is generally weak. Particularly, in the optical range, the weakness of magnetic effects is directly related to the asymmetry between electric and magnetic charges. Harnessing artificial magnetism started with a...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2023-01, Vol.133 (3) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 133 |
creator | Wu, Yuyang Xie, Peng Ding, Qi Li, Yuhang Yue, Ling Zhang, Hong Wang, Wei |
description | The magnetic response of most natural materials, characterized by magnetic permeability, is generally weak. Particularly, in the optical range, the weakness of magnetic effects is directly related to the asymmetry between electric and magnetic charges. Harnessing artificial magnetism started with a pursuit of metamaterial design exhibiting magnetic properties. The first demonstration of artificial magnetism was given by a plasmonic nanostructure called split-ring resonators. Engineered circulating currents form magnetic plasmons, acting as the source of artificial magnetism in response to external electromagnetic excitation. In the past two decades, magnetic plasmons supported by plasmonic nanostructures have become an active topic of study. This Perspective reviews the latest studies on magnetic plasmons in plasmonic nanostructures. A comprehensive summary of various plasmonic nanostructures supporting magnetic plasmons, including split-ring resonators, metal–insulator–metal structures, metallic deep groove arrays, and plasmonic nanoclusters, is presented. Fundamental studies and applications based on magnetic plasmons are discussed. The formidable challenges and the prospects of the future study directions on developing magnetic plasmonic nanostructures are proposed. |
doi_str_mv | 10.1063/5.0131903 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0131903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766865368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-aa6bfe934c3ceb70984c3679fc7f6df60a05be888b89ed54d247c330024fbc3d3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwZNC10nTpMnelsUvWPGi55CmiXTZTWqSVvz3VnbVg-BphuFhZngROscww8DINZ0BJlgAOUATDFzkFaVwiCYABc65qMQxOolxDYAxJ2KC5o_q1ZnU6qzbqLj1Lmat--7HqVPOxxR6nfpg4jxbuMwPJgyteT9FR1Ztojnb1yl6ub15Xt7nq6e7h-VilWvCipQrxWprBCk10aauQPCxY5WwurKssQwU0NpwzmsuTEPLpigrTcj4cGlrTRoyRRe7vV3wb72JSa59H9x4UhYVY5xRwvioLndKBx9jMFZ2od2q8CExyK9oJJX7aEZ7tbNRt0ml1rsfPPjwC2XX2P_w382fx69x2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766865368</pqid></control><display><type>article</type><title>Magnetic plasmons in plasmonic nanostructures: An overview</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wu, Yuyang ; Xie, Peng ; Ding, Qi ; Li, Yuhang ; Yue, Ling ; Zhang, Hong ; Wang, Wei</creator><creatorcontrib>Wu, Yuyang ; Xie, Peng ; Ding, Qi ; Li, Yuhang ; Yue, Ling ; Zhang, Hong ; Wang, Wei</creatorcontrib><description>The magnetic response of most natural materials, characterized by magnetic permeability, is generally weak. Particularly, in the optical range, the weakness of magnetic effects is directly related to the asymmetry between electric and magnetic charges. Harnessing artificial magnetism started with a pursuit of metamaterial design exhibiting magnetic properties. The first demonstration of artificial magnetism was given by a plasmonic nanostructure called split-ring resonators. Engineered circulating currents form magnetic plasmons, acting as the source of artificial magnetism in response to external electromagnetic excitation. In the past two decades, magnetic plasmons supported by plasmonic nanostructures have become an active topic of study. This Perspective reviews the latest studies on magnetic plasmons in plasmonic nanostructures. A comprehensive summary of various plasmonic nanostructures supporting magnetic plasmons, including split-ring resonators, metal–insulator–metal structures, metallic deep groove arrays, and plasmonic nanoclusters, is presented. Fundamental studies and applications based on magnetic plasmons are discussed. The formidable challenges and the prospects of the future study directions on developing magnetic plasmonic nanostructures are proposed.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0131903</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Grooves ; Magnetic effects ; Magnetic permeability ; Magnetic properties ; Magnetism ; Metamaterials ; Nanoclusters ; Nanostructure ; Plasmonics ; Plasmons ; Resonators</subject><ispartof>Journal of applied physics, 2023-01, Vol.133 (3)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-aa6bfe934c3ceb70984c3679fc7f6df60a05be888b89ed54d247c330024fbc3d3</citedby><cites>FETCH-LOGICAL-c362t-aa6bfe934c3ceb70984c3679fc7f6df60a05be888b89ed54d247c330024fbc3d3</cites><orcidid>0000-0002-6418-9629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0131903$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Wu, Yuyang</creatorcontrib><creatorcontrib>Xie, Peng</creatorcontrib><creatorcontrib>Ding, Qi</creatorcontrib><creatorcontrib>Li, Yuhang</creatorcontrib><creatorcontrib>Yue, Ling</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><title>Magnetic plasmons in plasmonic nanostructures: An overview</title><title>Journal of applied physics</title><description>The magnetic response of most natural materials, characterized by magnetic permeability, is generally weak. Particularly, in the optical range, the weakness of magnetic effects is directly related to the asymmetry between electric and magnetic charges. Harnessing artificial magnetism started with a pursuit of metamaterial design exhibiting magnetic properties. The first demonstration of artificial magnetism was given by a plasmonic nanostructure called split-ring resonators. Engineered circulating currents form magnetic plasmons, acting as the source of artificial magnetism in response to external electromagnetic excitation. In the past two decades, magnetic plasmons supported by plasmonic nanostructures have become an active topic of study. This Perspective reviews the latest studies on magnetic plasmons in plasmonic nanostructures. A comprehensive summary of various plasmonic nanostructures supporting magnetic plasmons, including split-ring resonators, metal–insulator–metal structures, metallic deep groove arrays, and plasmonic nanoclusters, is presented. Fundamental studies and applications based on magnetic plasmons are discussed. The formidable challenges and the prospects of the future study directions on developing magnetic plasmonic nanostructures are proposed.</description><subject>Applied physics</subject><subject>Grooves</subject><subject>Magnetic effects</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Metamaterials</subject><subject>Nanoclusters</subject><subject>Nanostructure</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Resonators</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BwZNC10nTpMnelsUvWPGi55CmiXTZTWqSVvz3VnbVg-BphuFhZngROscww8DINZ0BJlgAOUATDFzkFaVwiCYABc65qMQxOolxDYAxJ2KC5o_q1ZnU6qzbqLj1Lmat--7HqVPOxxR6nfpg4jxbuMwPJgyteT9FR1Ztojnb1yl6ub15Xt7nq6e7h-VilWvCipQrxWprBCk10aauQPCxY5WwurKssQwU0NpwzmsuTEPLpigrTcj4cGlrTRoyRRe7vV3wb72JSa59H9x4UhYVY5xRwvioLndKBx9jMFZ2od2q8CExyK9oJJX7aEZ7tbNRt0ml1rsfPPjwC2XX2P_w382fx69x2A</recordid><startdate>20230121</startdate><enddate>20230121</enddate><creator>Wu, Yuyang</creator><creator>Xie, Peng</creator><creator>Ding, Qi</creator><creator>Li, Yuhang</creator><creator>Yue, Ling</creator><creator>Zhang, Hong</creator><creator>Wang, Wei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6418-9629</orcidid></search><sort><creationdate>20230121</creationdate><title>Magnetic plasmons in plasmonic nanostructures: An overview</title><author>Wu, Yuyang ; Xie, Peng ; Ding, Qi ; Li, Yuhang ; Yue, Ling ; Zhang, Hong ; Wang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-aa6bfe934c3ceb70984c3679fc7f6df60a05be888b89ed54d247c330024fbc3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Grooves</topic><topic>Magnetic effects</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Metamaterials</topic><topic>Nanoclusters</topic><topic>Nanostructure</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Resonators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yuyang</creatorcontrib><creatorcontrib>Xie, Peng</creatorcontrib><creatorcontrib>Ding, Qi</creatorcontrib><creatorcontrib>Li, Yuhang</creatorcontrib><creatorcontrib>Yue, Ling</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yuyang</au><au>Xie, Peng</au><au>Ding, Qi</au><au>Li, Yuhang</au><au>Yue, Ling</au><au>Zhang, Hong</au><au>Wang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic plasmons in plasmonic nanostructures: An overview</atitle><jtitle>Journal of applied physics</jtitle><date>2023-01-21</date><risdate>2023</risdate><volume>133</volume><issue>3</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The magnetic response of most natural materials, characterized by magnetic permeability, is generally weak. Particularly, in the optical range, the weakness of magnetic effects is directly related to the asymmetry between electric and magnetic charges. Harnessing artificial magnetism started with a pursuit of metamaterial design exhibiting magnetic properties. The first demonstration of artificial magnetism was given by a plasmonic nanostructure called split-ring resonators. Engineered circulating currents form magnetic plasmons, acting as the source of artificial magnetism in response to external electromagnetic excitation. In the past two decades, magnetic plasmons supported by plasmonic nanostructures have become an active topic of study. This Perspective reviews the latest studies on magnetic plasmons in plasmonic nanostructures. A comprehensive summary of various plasmonic nanostructures supporting magnetic plasmons, including split-ring resonators, metal–insulator–metal structures, metallic deep groove arrays, and plasmonic nanoclusters, is presented. Fundamental studies and applications based on magnetic plasmons are discussed. The formidable challenges and the prospects of the future study directions on developing magnetic plasmonic nanostructures are proposed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0131903</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6418-9629</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-01, Vol.133 (3) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0131903 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Grooves Magnetic effects Magnetic permeability Magnetic properties Magnetism Metamaterials Nanoclusters Nanostructure Plasmonics Plasmons Resonators |
title | Magnetic plasmons in plasmonic nanostructures: An overview |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20plasmons%20in%20plasmonic%20nanostructures:%20An%20overview&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Wu,%20Yuyang&rft.date=2023-01-21&rft.volume=133&rft.issue=3&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0131903&rft_dat=%3Cproquest_cross%3E2766865368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766865368&rft_id=info:pmid/&rfr_iscdi=true |